
Physics 513, Quantum Field Theory
Homework 1

Due Tuesday, 9th September 2003

Jacob Lewis Bourjaily

Problem 1) The conservation of four-momentum implies that in particle one’s rest frame,

p0
1 = m1 = E2 + E3. (1.1)

By the invariance of p2
1, p2

2, and p2
3, it is clear that,

p2
1 = m2

1 = (p2 + p3)
2
,

= p2
2 + p2

3 + 2p2p3,

= m22 + m2
3 + 2E2E3 − ~p2~p3.

But in particle one’s rest frame, ~p2 = −~p3 and by (1.1), E3 = m1 − E2. Therefore,

m2
1 = m2

2 + m2
3 + 2m1E2 − 2

(
E2

2 − ~p2
2

)
,

= m2
3 −m2

2 + 2m1E2,

∴ E2 =
m1

2
+

m2
2 −m2

3

2m1
. (1.2)

Problem 2)

(a) laboratory frame center of mass frame
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(b) In the center of mass frame of reference, the total 4-momentum can be described by,

pcm = p′1 + p′2 = (E1 + E2;~0) ≡ (Ecm;~0).

Note that p1p2 is an invariant scalar product. Evaluated in the laboratory frame,

p1p2 = ELm2 − ~pL
~0 = ELm2.

This allows us to conclude that,

p2
cm = E2

cm = p′21 + p′22 + 2p1p2,

∴ E2
cm = m2

1 + m2
2 + 2ELm2. (2.1)

(c) Consider the four-vectors η and λ defined by,

η ≡ (p1 + p2) = (EL + m2; ~pL) η′ ≡ (E′
1 + E′

2;~0) = (Ecm;~0);

λ ≡ (p1 − p2) = (EL −m2; ~pL) λ′ ≡ (E′
1 − E′

2; 2~p ′).

By the frame-invariance of the scalar product,

ηλ = η′λ′ = E2
L −m2

2 − |~pL|2 = Ecm(E′
1 − E′

2). (2.2)
1



2 JACOB LEWIS BOURJAILY

Now consider the identity η′2λ′2 = η2λ2. Calculating these products and using the result
above,

η′2λ′2 = E2
cm

(
(E′

1 − E′
2)

2 − 4|~p′1|2
)

=
(
(EL + m2)2 − |~pL|2

) (
(EL −m2)2 − |~pL|2

)
= η2λ2,

E2
cm(E′

1 − E′
2)

2 − 4|~p′1|2E2
cm =

(
E2

L −m2
2 − |~pL|2

)2 − 4m2
2|~pL|2,

= E2
cm(E′

1 − E′
2)

2 − 4m2
2|~pL|2,

∴ |~p′1|2 =
m2

2|~pL|2
E2

cm

⇒ |~p′1| =
m2|~pL|
Ecm

. (2.3)

(d) By the conservation of four-momentum, q = p1 − p3 = p4 − p2. So,

q2 = (p4 − p2)2 = 2m2
4 − 2p2p4,

= 2m2
4 − 2E4m4,

∴ q2 = −2m4(E4 −m4). (2.4)

(e) The first part of this problem, namely that s ≡ (p1 + p2)2 = E2
cm, was demonstrated and

used in part (b) above. Let us now consider t ≡ q2,

t ≡ q2 = p2
1 + p2

3 − 2p1p3 = 2m2
1 − 2E′

1E
′
3 + 2|~p1

′||~p3
′| cos(θ′).

Here, we wrote p1p2 explicitly in the center of mass frame. Because it is an invariant, any
frame will do. Now we can use the fact that m1 = m3 and m2 = m4 to see that |~p′1| = |~p′3|
and that E′

1 = E′
3 by using part (c) from above. We will now use the notation of the

assignment where |~p′1| = p′. This quickly reduces the above equality to

q2 = 2
(
m2

1 − E′2
1 + p′2 cos(θ′)

)
.

This can be simplified in two ways. First, notice that m2
1−E′2

1 = −p′2 because E′2
1 − p′2 =

m2
1. Second we will use the trigonometric identity 1 − cos(α) = 2 sin2(α/2). Introducing

these simplifications we obtain

q2 = −4p′2 sin2 (θ′/2) . (2.5)

(f) To explore new areas of physics at very high energies, one requires the greatest center
of mass energy possible. This is because the center of mass energy is what is available to
create new matter in a collision. It is simple to show that fixed-target experiments have
significantly lower energy than comparable colliders. This is seen by solving the expression
for s in part (e) above. In a fixed target collision, we can compute (p1+p2)2 in the laboratory
frame because it is an invariant. In the laboratory frame, p1 = (EB ; ~pL) and p2 = (m2,~0).
Therefore in a fixed target experiment,

E2
cm = p2

1 + p2
2 + 2p1p2 = m2

1 + m2
2 + 2m2EB . (2.6)

Approximating this in the case of a high energy collision where EB >> m1,m2,

Ecm '
√

2m2EB . (2.7)

This does not look very cost effective. If you increased the beam energy 100 times,
there would only be 10 times more energy available for particle creation. In the center of
mass collision, however, we see that there is much higher efficiency. In such a collision,
p1 = (EB ; ~p) and p2 = (EB ;−~p). Taking the same approximation that the beam energy is
significantly higher than the rest-masses of the particles involved,

Ecm ' 2EB . (2.8)

It is clear that this would be the preferred experiment. A 100 fold increase in beam
energy would result in 100 times more energy available: the way one would expect it to be.
Despite the energy efficiency of center of mass colliders, many experiments still use fixed
target experiments. Why? There are several primary reasons. The first is that it is extraor-
dinarily difficult and usually very expensive to build a collider. If the collider is to work
with matter and antimatter like Fermilab today, LEP I or LEP II, one can use the same
(vertical) magnetic fields to accelerate the particles and antiparticles in opposite directions.
This saves money on magnets but requires solving enormous engineering obstacles. In the
LEP accelerator at CERN, for example, both the e− and e+ beams were in the same vac-
uum chamber; they had to be prevented from interacting except in very explicit locations
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along the accelerator. Imagine ultra-relativistic beams of positrons and electrons moving
oppositely in a small vacuum tube only separated by a centimeter. It clearly takes a great
deal of forethought.

In addition to engineering hurdles, there are also very large costs involved in building
these accelerators. If the collider is built to accelerate only matter, then the same magnetic
field cannot be used to accelerate opposing beams. This means that literally two entire
magnetic tracks must be built (essentially two entirely separate accelerators). This is what
is being done for the Large Hadron Collider at CERN.

Problem 3) We would like to consider the Lagrangian density,

L =
1
2
(∂µφ)2 − aφ− b

2
φ2 − α

3!
φ3 − β

4!
φ4,

under the transformation φ → φ′ = φ + c. By direct calculation,

L =
1
2
(∂µφ)2 − c

(
a +

bc

2
+

αc2

6
+

βc3

24

)

− φ

(
a + bc +

αc2

2
+

βc3

6

)

− φ2

(
b

2
+

αc

2
+

βc2

4

)

− φ3

(
α

6
+

βc

6

)

− φ4 β

4!
.

We are to show that a constant c can be chosen to remove the linear term in the Lagrangian.
Notice that the constant term in the Lagrangian is fine—we can always shift the Lagrangian
density by a constant without changing the equations of motion. Therefore, we must show that
we can find a c such that, (

a + bc +
αc2

2
+

βc3

6

)
= 0; (3.1)

Although it would be a terrible headache to solve the above cubic equation in complete gen-
erality (short of citing Cardan’s solution), we will simply note that every third order polynomial
has one real root. Analytically, one sees that for c → −∞, the expression in parenthesis will
eventually be negative and for c → ∞, the expression will eventually be positive. Therefore,
thre must be some c such that the above expression vanishes.

After a bit of algebra, one sees that one can shift L to the form,

L =
1
2
(∂µφ)2 − m2

2
φ2 − g

3!
φ3 − λ

4!
φ4, (3.2)

where,

λ = β;

g = (α− βc);

m2 =
(

b− αc +
βc2

2

)
;

c =
−4α± 2

√
4α2 − 9βb

3β
.
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Physics 513, Quantum Field Theory
Homework 2

Due Tuesday, 16th September 2003

Jacob Lewis Bourjaily

1. a) Studying classical field theory, we derived the Euler-Lagrange equations of motion,

∂L
∂φ

− ∂µ
∂L

∂(∂µφ)
= 0.

It is trivial to show that a field which is described by the Lagrangian given has the following
equation of motion:

−m2φ− ∂V

∂φ
− ∂µ∂µφ = 0,

=⇒ (
∂µ∂µ + m2

)
φ = −∂V

∂φ
. (1.1)

Which is precisely the Klein-Gordon equation for a field in a potential V .
b) The canonical momentum is,

π =
∂L

∂(∂0φ)
= ∂0φ. (1.2)

Using π, we write the Hamiltonian for the field.

H =
∫

d3xH =
∫

d3x (π∂0φ− L),

=
∫

d3x
(
π2 − 1/2(∂0φ)2 + 1/2(∇φ)2 + 1/2m2φ2 + V (φ)

)
,

=
1
2

∫
d3x

(
π2 + (∇φ)2 + m2φ2 + 2V (φ)

)
. (1.3)

c) With a complex scalar field, the Lagrangian becomes

L = ∂µφ∗∂µφ−m2φ∗φ− V (φ∗φ).

Following the same procedure as in part (a) above, we use the Euler-Lagrange equation to
show that

−m2φ∗φ− φ∗
∂V

∂φ
− φ

∂V

∂φ∗
− ∂µφ∗∂µφ = 0.

=⇒ (
∂µ∂µ + m2

)
φ∗φ = −φ∗

∂V

∂φ
− φ

∂V

∂φ∗
(1.4)

It is relatively easy to show that canonical momenta of the field are

π =
∂L

∂(∂0φ)
= ∂0φ

∗;

π∗ =
∂L

∂(∂0φ∗)
= ∂0φ.

Using this expression for π, we will proceed as above to compute the Hamiltonian.

H =
∫

d3xH =
∫

d3x (π∂0φ− L),

=
∫

d3x
(
π∗π − 1/2π∗π + 1/2∇φ∗∇φ + 1/2m2φ∗φ + V (φ∗φ)

)
,

=
1
2

∫
d3x

(
π∗π +∇φ∗∇φ + m2φ∗φ + 2V (φ∗φ)

)
. (1.5)
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d) Let us derive the Noether current generated by a global phase rotation φ → φ′ = eiαφ. It
is clear that L′ = L because only modulus terms of φ appear in L. We rewrite the global
phase rotation to the first order as

φ → φ′ = eiαφ ≈ (1 + iα)φ ⇒ ∆φ = iφ;

φ∗ → φ′∗ = e−iαφ∗ ≈ (1− iα)φ∗ ⇒ ∆φ∗ = −iφ∗. (1.6)

We showed in class that the conserved Noether current associated with a symmetry is
specified by

jµ =
∂L

∂(∂µφ)
∆φ +

∂L
∂(∂µφ∗)

∆φ∗,

= (iφ∂µφ∗ − iφ∗∂µφ) ,

= i (φ∂µφ∗ − φ∗∂µφ) . (1.7)

2. a) The Lagrangian for a source-free electromagnetic field is specified by

L = −1
4
FµνFµν where Fµν = ∂µAν − ∂νAµ. (2.1)

It is clear that Fµν is antisymmetric, Fµν = −Fνµ. From our knowledge of the metric
tensor in Minkowski space, it is also clear that Fµν = −Fµν if either µ or ν is zero and
Fµν = Fµν if both µ and ν are nonzero. Because the field strength tensor is antisymmetric,
our calculation will be much easier.

L = −1
2

(
F01F

01 + F02F
02 + F03F

03 + F12F
12 + F13F

13 + F23F
23

)
,

=
1
2

(
F 2

01 + F 2
02 + F 2

03 − F 2
12 − F 2

13 − F 2
23

)
,

=
1
2
[(∂0A1 − ∂1A0)2 + (∂0A2 − ∂2A0)2 + (∂0A3 − ∂3A0)2

− (∂1A2 − ∂2A1)2 − (∂1A3 − ∂3A1)2 − (∂2A3 − ∂3A2)2],

=
1
2

(
E2 −B2

)
.

Now, let us try to find the Euler-Lagrange equations for motion for this field. Note that
from our work above if it clear that,

∂L
∂Aν

= 0.

After a short while of staring at the above equations, you should see that
∂L

∂(∂µAν)
=

{
(∂µAν − ∂νAµ) if µ = 0 or ν = 0,
−(∂µAν − ∂νAµ) if µ, ν 6= 0,

= −Fµν = F νµ.

So the equations of motion are simply

∂µF νµ = 0. (2.2)

Knowing that Ei = −F 0i and εijkBk = F ji, we can rewrite (2.2) as

∂µF 0µ = ∂iF
0i = 0 = −∂1E

1 − ∂2E
2 − ∂3E

3 = 0,

∴ ∇ ·E = 0. (2.3)
The other equations also can be reduced to familiarity. Specifically,

∂µF νµ = ∂µF kµ = 0,

=⇒ ∂0F
k0 = ∂iF

ki = εijk∂iBj ,

∴ ∇×B = ∂0E. (2.4)

These two equations represent half of Maxwell’s equations for a source-free field. The other
two equations relate the vector potential Aν with the E and B fields. These two other
equations were ‘given.’ We needed to know that B = ∇×A and E = −∂0A−∇A0 to write
down the components of E and B in terms of Fµν .
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b) We construct the energy-momentum tensor, Tµν , (using the equation derived in my unpub-
lished QFT notes),

Tµν =
∂L

∂(∂µAλ)
∂νAλ − Lδµν , (2.5)

It should be clear that by simply applying our results of part (a)

Tµν = Fλµ∂νAλ − Lδµν .
This is not symmetric in µ and ν. Remember that the important aspect of Tµν is that it is
conserved, i.e. ∂µTµν = 0. To make Tµν easier to work with, consider changing it to

T̂µν = Tµν + ∂λK
λµν .

Where Kλµν is antisymmetric in its first two indices. By this antisymmetry, it is clear that

∂µT̂
µν = ∂µT

µν + ∂µ∂λK
λµν = 0.

So T̂µν is a conserved quantity for any Kλµν that is antisymmetric in its first two indices.
Let Kλµν = FµλAν which is certainly antisymmetric in λ and µ because of Fµλ. This
allows us to rewrite T̂µν in a much simpler form. (Note the use of the Euler-Lagrange
equations to simplify line 2 below).

T̂µν = Tµν + ∂λF
µλAν ,

= Tµν +Aν(∂λFµλ) + Fµλ(∂λAν),

= Tµν + Fµλ(∂λAν),

= Fλµ∂νAλ + Fµλ∂λA
ν − Lδµν ,

= Fλµ(∂νAλ − ∂λAν)− Lδµν .

It should be clear that T̂µν = T̂ νµ. Now we are ready to derive the Hamiltonian and total
momentum from T̂µν . First, the Hamiltonian is

H = E = T̂ 00,

= Ei(∂iA0 − ∂0Ai)− L,

= E2 − Ei∂0Ai −
1
2

(E2 −B2),

=
1
2

(E2 + B2).

(2.6)

Note that in the last line of the derivation we had to set Ei∂0Ai = 0. The total momentum
of the field is

Sk = T 0k = −Ei(∂iAk − ∂kAi),

= Ei(∂iAk − ∂kAi),

= Eiε
ijkBk,

∴ S = E×B. (2.7)
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3. a) The inner product, (f,g), will be defined

(f, g) ≡ i

∫
d3xf∗(x)∂0g(x)− g(x)∂0f

∗(x),

We show that (f, g) is independent of time. This is demonstrated by direct computation.

∂0(f, g) = i

∫
d3x∂0 [f∗(x)∂0g(x)− g(x)∂0f

∗(x)],

= i

∫
d3x

[
∂0f

∗(x)∂0g(x) + f∗(x)∂2
0g(x)− g(x)∂2

0f∗(x)− ∂0f
∗(x)∂0g(x)

]
,

= i

∫
d3x

[
f∗(x)∂2

0g(x)− g(x)∂2
0f∗(x)

]
.

Using the Klein-Gordon equation, this reduces to

∂0(f, g) = i

∫
d3xf∗(∇2 −m2)g − g(∇2 −m2)f∗,

= i

∫
d3xf∗∇2g − g∇f∗.

We use Green’s Theorem to reduce the equation above to

∂0(f, g) = i

∫

S

(f∗∇g − g∇f∗)~n · da = 0. (3.1)

The integral vanishes because we may assume that the fields go to zero at infinity.

b) Recall that the inverse Fourier transform of a Fourier transform of a function is the function
itself.

f(k) =
∫

d3x

[
eikx

∫
d3k

(2π)3
e−ikxf(k)

]
.

Note that when we will express φ(x) in terms of ladder operators below, φ will be a function
of the 4-vectors k and x. There is a minus sign to keep track of that is different from the
book’s 3-vector representation.

φ(x) =
∫

d3k

(2π)3
a√
2Ek

(
ake−ikx + a†keikx

)
.

We are now ready to derive the required identity. It will proceed by direct calculation.

ak = (fk(x), φ(x)) = i

∫
d3x(f∗∂0φ− φ∂0f

∗),

= i

∫
d3x

[
eikx

∫
d3k

(2π)3
1

2Ek

(
−iEkake−ikx + iEka†keikx

)

−eikx

∫
d3k

(2π)3
iEk

2Ek

(
ake−ikx + a†keikx

)]
,

=
∫

d3xeikx

[∫
d3k

(2π)3
1
2

(
ake−ikx − a†keikx + ake−ikx + a†keikx

)]
,

=
∫

d3xeikx

∫
d3k

(2π)3
e−ikxak = ak,

∴ ak = (fk(x), φ(x)) = ak. (3.2)
‘óπερ ’έδει δεÄιξαι
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c) Let us derive the the commutation relation
[
ap, a†p′

]
= (2π)3δ(3)(p − p′). To find this

commutation relation, we will first consider the fields in terms of ladder operators.

φ(x) =
∫

d3p

(2π)3
1√
2ωp

(ap + a†−p)eip·x;

π(y) =
∫

d3p′

(2π)3
(−i)

√
ωp′

2
(ap′ − a†−p′)e

ip′·y.

Note that because the p’s are dummy variables, we cannot assume they are the same when
we “mix” the integration, so we have called one p’.

[φ(x), π(y)] = iδ(3)(x− y)

=
∫

d3pd3p′

(2π)6

√
ωp′

ωp

−i

2

(
apap′ − apa†−p′ + a†−pap′ − a†−pa†−p′ − ap′ap − ap′a

†
−p + a†−p′ap + a†−p′a

†
−p

)
ei(p·x+p′·y)

=
∫

d3pd3p′

(2π)6

√
ωp′

ωp

i

2

(
apa†−p′ − a†−p′ap + ap′a

†
−p − a†−pap′

)
ei(p·x+p′·y)(cancelling like terms by symmetry)

=
∫

d3pd3p′

(2π)6

√
ωp′

ωp

i

2

([
ap, a†−p′

]
+

[
ap′ , a

†
−p

])
ei(p·x+p′·y)

(
note that

[
ap, a†−p′

]
=

[
ap′ , a

†
−p

])

=
∫

d3pd3p′

(2π)6

√
ωp′

ωp
i
[
ap, a†−p′

]
ei(p·x+p′·y) = iδ(3)(x− y). (3.3)

Note that by the properties of the Dirac δ functional,∫
d3pd3p′

(2π)3
iei(p·x+p′·y) = iδ(3)(x− y).

Applying this knowledge to (3.3) from above,
[
ap, a†−p′

]
must satisfy

∫
d3pd3p′

(2π)3

√
ωp′

ωp
[ap, a†−p′ ] = 1.

This is identically satisfied if and only if we have that[
ap, a†−p′

]
= (2π)3δ(3)(p + p′).

You can check this statement by noticing that this implies∫
d3pd3p′

(2π)3

√
ωp′

ωp

[
ap, a†−p′

]
=

√
ωp

ωp
= 1.

Therefore, noting our use of −p, we may conclude that
[
ap, a†p′

]
= (2π)3δ(3)(p− p′) (3.4)

‘óπερ ’έδει δεÄιξαι
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Physics 513, Quantum Field Theory
Homework 3

Due Tuesday, 23rd September 2003

Jacob Lewis Bourjaily

1. a) We are given complex scalar Lagrangian,

L = ∂µφ∗∂µφ−m2φ∗φ.

It is clear that the canonical momenta of the field are

π =
∂L

∂(∂0φ)
= ∂0φ

∗;

π∗ =
∂L

∂(∂0φ∗)
= ∂0φ.

The canonical commutation relations are then

[φ(x), ∂0φ
∗(y)] = [φ∗(x), ∂0φ(y)] = iδ(3)(x− y),

with all other combinations commuting. As in Homework 2, the Hamiltonian can be directly
computed,

H =
∫

d3xH =
∫

d3x (π∂0φ− L),

=
∫

d3x
(
π∗π − 1/2π∗π + 1/2∇φ∗∇φ + 1/2m2φ∗φ

)
,

=
1
2

∫
d3x

(
π∗π +∇φ∗∇φ + m2φ∗φ

)
.

We can use this expression for the Hamiltonian to find the Heisenberg equation of motion.
We have

i∂0φ(x) =
[
φ(x),

1
2

∫
d3y

(
π∗(y)π(y) +∇φ∗(y)∇φ(y) + m2φ∗(y)φ(y)

)]
,

=
1
2

∫
d3y [φ(x), π(y)]π∗(y),

=
i

2

∫
d3y δ(3)(x− y)π∗(y),

=
i

2
π∗(x).

Analogously, i∂0φ
∗(x) = i

2π(x). Notice that this derivation used the fact that φ commutes
with everything in H except for π. Before we compute the commutator of π∗(x) with the
Hamiltonian, we should re-write H as PS did so that our conclusion will be more lucid. We
have from above that

H =
1
2

∫
d3x

(
π∗π +∇φ∗∇φ + m2φ∗φ

)
.

We can evaluate the middle term in H using Green’s Theorem (essentially integration by
parts). We will assume that the surface term vanishes at infinity because the fields must.
This allows us to write the Hamiltonian as,

H =
1
2

∫
d3x

(
π∗π + φ∗(−∇2 + m2)φ

)
.
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Commuting this with π∗(x), we conclude that

i∂0π
∗(x) =

1
2

∫
d3y [π∗(x), φ∗(y)](−∇2 + m2)φ(y),

= − i

2

∫
d3y (−∇2 + m2)φ(y)δ(3)(x− y),

= − i

2
φ(x).

Combining the two results, it is clear that

∂2
0φ(x) = (∇)2 −m2)φ(x),

=⇒ (∂µ∂µ + m2)φ = 0.

This is just the Klein-Gordon equation. The result is the same for the complex conjugate
field.

b) Because the field is no longer purely real, we cannot assume that the coefficient of eip·x in
the ladder-operator Fourier expansion is the adjoint of the coefficient of e−ip·x. Therefore
we will use the operator b. The expansion of the fields are then

φ(xµ) =
∫

d3p

(2π)3
1√
2ωp

(
ape−ipµxµ

+ b†peipµxµ
)
;

φ∗(xµ) =
∫

d3q

(2π)3
1√
2ωq

(
a†qeiqµxµ

+ bqe−iqµxµ
)
.

It is easy to show that these allow us to define π and π∗ in terms of a and b operators as
well. These become,

π(xµ) = ∂0φ
∗(xµ) =

∫
d3q

(2π)3
i

√
ωq

2

(
a†qeiqµxµ − bqe−iqµxµ

)
;

π∗(xµ) = ∂0φ(xµ) =
∫

d3p

(2π)3
i

√
ωp

2

(
−ape−ipµxµ

+ b†peipµxµ
)
.

These allow us to directly demonstrate that

[φ(xµ), π(yµ)] =
∫

d3pd3q

(2π)6
−i

2

√
ωq

ωp

([
ap, a†q

]
e−i(pµxµ−qµxµ) − [

b†p, bq
]
ei(pµxµ−qµxµ)

)
,

= iδ(3)(x− y),

while noting that
[
ap, a†q

]
=

[
bp, b†q

]
= (2π)3δ(3)(p− q),

and all other terms commute. This implies that there are in fact two entirely different sets
of particles with the same mass: those created by b† and those created by a†.

c) I computed the conserved Noether charge in Homework 2 as

jµ = i (φ∂µφ∗ − φ∗∂µφ) .

We integrate this over all space to see the conserved current in the 0 component. When
expressing phi and pi in terms of ladder operators, we can evaluate this directly.

Q =
i

2

∫
dx(φ∗(x)π∗(x)− π(x)φ(x)),

=
i

2

∫
d3xd3pd3q

(2π)6
(
apa†qeixµ(qµ−pµ) − apbqe−ixµ(pµ+qµ) + b†pa†qeixµ(pµ+qµ) − b†pbqeixµ(qµ−pµ)

)
− c.c.,

=
i

2

∫
d3pd3q

(2π)3
(
apa†qδ(3)(p− q)− apbqδ(3)(p + q) + b†pa†qδ(3)(p + q)− b†pbqδ(3)(p− q)

)
− c.c.,

=
i

2

∫
d3p

(2π)3
(
apa†p − apb−p + b†pa†−p − b†pbp

)
− c.c.,

= i

∫
d3p

(2π)3
(
a†pap − b†pbp

)
.

‘óπερ ’έδει δεÄιξαι



PHYSICS 513: QUANTUM FIELD THEORY HOMEWORK 3 3

The calculation on the previous page clearly shows that particles that were created by b†

contribute oppositely to those created by a† to the total charge. We concluded in Homework
2 that this charge was electric charge.

2. a) We are asked to compute the general, K-type Bessel function solution of the Wightman
propagator,

DW (x) ≡ 〈0|φ(x)φ(0)|0〉 =
∫

d3p

(2π)3
1

2Ep
e−ipx.

Because x is a space-like vector, there exists a reference frame such that x0 = 0. This implies
that x2 = −x2. And this implies that px = −p · x = −|p||x| cos(θ) = −|p|√−x2 cos(θ). We
can then write DW (x) in polar coordinates as

DW (x) =
1

(2π)3

∫ 2π

0

dφ

∫ π

0

ei|p|√−x2 cos(θ)

∫ ∞

0

p2dp
1

2
√

p2 + m2
,

=
1

(2π)2

∫ π

0

dθ ei|p|√−x2 cos(θ)

∫ ∞

0

p2dp
1

2
√

p2 + m2
,

=
1

(2π)2

∫ 1

−1

dξ ei|p|√−x2ξ

∫ ∞

0

p2dp
1

2
√

p2 + m2
,

(where ξ = cos(θ))

=
1

4π2

∫ ∞

0

p2dp
1

2
√

p2 + m2

1
i|p|√−x2

(
ei|p|√−x2 − e−i|p|√−x2

)
,

=
1

4π2
√−x2

∫ ∞

0

dp
p sin(|p|√−x2)√

p2 + m2
.

Gradsteyn and Ryzhik’s equation (3.754.2) states that for a K Bessel function,∫ ∞

0

dx
cos(ax)√
β2 + x2

= K0(aβ)).

By differentiating both sides with respect to a, it is shown that

−
∫ ∞

0

dx
a sin(ax)√

β2 + x2
= −βK ′

0(aβ) = βK1(aβ).

We can use this identity to write a more concise equation for DW (x). We may conclude

DW (x) =
m

4π2
√−x2

K1(m
√
−x2).

b) We may compute directly,

iD(x) = 〈0|[φ(x), φ(0)]|0〉,
= 〈0|φ(x), φ(0)|0〉 − 〈0|φ(0), φ(x)|0〉,
= DW (x)−DW (−x),

=⇒ D(x) = i(DW (−x)−DW (x)).

Similarly,
D1(x) = 〈0|{φ(x), φ(0)}|0〉 = DW (x) + DW (−x).

It is clear that both function ‘die off’ very rapidly at large distances. I was not able to
conclude that they were truly vanishing, but they are certainly nearly-so at even moderately
small distances.
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Physics 513, Quantum Field Theory
Homework 4

Due Tuesday, 30th September 2003

Jacob Lewis Bourjaily

1. We have defined the coherent state by the relation

|{ηk}〉 ≡ N exp

{∫
d3k

(2π)3
ηka†k√
2Ek

}
|0〉.

For my own personal convenience throughout this solution, I will let

A ≡
∫

d3k

(2π)3
ηka†k√
2Ek

.

a) Lemma:
[
ap, e

A]
= ηp√

2Ep

eA.

proof: First we note that from simple Taylor expansion (which is justified here),

eA = 1 +A+
A2

2
+
A3

3!
+ . . .

Clearly ap commutes with 1 so we may write,
[
ap, e

A]
= [ap,A] +

1
2
[ap,A2] +

1
3!

[ap,A3] + . . . ,

= [ap,A] +
1
2

([ap,A]A+A[ap,A]) +
1
3!

(
[ap,A]A2 +A[ap,A]A+A[ap,A]A)

+ . . . ,

∗= [ap,A]
(

1 +A+
A2

2
+
A3

3!
+
A4

4!
+ . . .

)
,

= [ap,A]eA.

Note that the step labelled ‘*’ is unjustified. To allow the use of ‘*’ we must show that
[ap,A] is an invariant scalar and therefore commutes with all the A’s. This is shown by
direct calculation.

[ap,A] =
∫

d3k

(2π)3
ηk√
2Ek

[ap, a
†
k],

=
∫

d3k

(2π)3
ηk√
2Ek

(2π)3δ(3)(~p− ~k),

=
ηp√
2Ep

.

This proves what was required for ‘*.’ ηp√
2Ep

is clearly a scalar because η and Ep are real

numbers only. But by demonstrating the value of [ap,A] we can complete the proof of the
required lemma. Clearly,

[
ap, e

A]
= [ap,A]eA =

ηp√
2Ep

eA.

‘óπερ ’έδει δεÄιξαι
It is clear from the definition of the commutator that ape

A =
[
ap, e

A]
+ eAap. Therefore it

is intuitively obvious, and also proven that

ap|{ηk}〉 = Nape
A|0〉,

= N ([
ap, e

A]
+ eAap

) |0〉,
= N ηp√

2Ep

|0〉+N eAap|0〉,

∴ ap|{ηk}〉 =
ηp√
2Ep

ap|{ηk}〉. (1.1)

‘óπερ ’έδει δεÄιξαι
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b) We are to compute the normalization constant N so that 〈{ηk}|{ηk}〉 = 1. I will proceed
by direct calculation.

1 = 〈{ηk}|{ηk}〉,

= N ∗〈0|e
∫

d3k
(2π)3

ηkak√
2Ek |{ηk}〉,

= N ∗〈0|e
∫

d3k
(2π)3

ηk√
2Ek |{ηk}〉

because we know that ak|{ηk}〉 = ηk√
2Ek

|{ηk}〉. So clearly

1 = |N |2e
∫

d3k
(2π)3

η2
k

2Ek ,

∴ N = e
− 1

2

∫
d3k

(2π)3
η2

k
2Ek .

c) We will find the expectation value of the field φ(x) by direct calculation as before.

φ(x) = 〈{ηk}|φ(x)|{ηk}〉 = 〈{ηk}|
∫

d3p

(2π)3
1√
2Ep

(
ape

i~p·~x + a†pe
−i~p·~x)|{ηk}〉,

=
∫

d3p

(2π)3
1√
2Ep


 〈{ηk}|ape

i~p·~x|{ηk}〉︸ ︷︷ ︸
act with ap to the right

+ 〈{ηk}|a†pe−i~p·~x|{ηk}〉︸ ︷︷ ︸
act with a†p to the left


,

=
∫

d3p

(2π)3
1√
2Ep

(
ηp√
2Ep

ei~p·~x +
ηp√
2Ep

e−i~p·~x
)

,

=
∫

d3p

(2π)3
ηp

Ep
cos(~p · ~x).

d) We will compute the expected particle number directly.

N = 〈{ηk}|N |{ηk}〉 = 〈{ηk}|
∫

d3p

(2π)3
a†pap|{ηk}〉,

=
∫

d3p

(2π)3

(
〈{ηk}|a†p←−−−−

ap|{ηk−−−−→}〉
)

,

=
∫

d3p

(2π)3
η2

p

2Ep
.

e) To compute the mean square dispersion, let us recall the theorem of elementary probability
theory that

〈(∆N)2〉 = N2 −N
2
.

We have already calculated N so it is trivial to note that

N
2

=
∫

d3kd3p

(2π)6
η2

kη2
p

4EkEp
.

Let us then calculate N2.

N2 = 〈{ηk}|N2|{ηk}〉 = 〈{ηk}|
∫

d3kd3p

(2π)6
a†kaka†pap|{ηk}〉,

=
∫

d3kd3p

(2π)6
ηkηp

2
√

EkEp

〈{ηk}|aka†p|{ηk}〉,

=
∫

d3kd3p

(2π)6
ηkηp

2
√

EkEp

(
(2π)3δ(3)(~k − ~p) + 〈{ηk}|a†pak|{ηk}〉

)
,

=
∫

d3k

(2π)3
η2

k

2Ek
+

∫
d3kd3p

(2π)6
η2

kη2
p

4EkEp
.

It is therefore quite easy to see that

〈(∆N)2〉 = N2 −N
2

=
∫

d3k

(2π)3
η2

k

2Ek
.
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2. We are given the Lorentz commutation relations,

[Jµν , Jρσ] = i(gνρJµσ − gµρJνσ − gνσJµρ + gµσJνρ).

a) Given the generators of rotations and boosts defined by,

Li =
1
2
εijkJjk Ki = J0i,

we are to explicitly calculate all the commutation relations. We are given trivially that

[Li, Lj ] = iεijkLk.

Let us begin with the K’s. By direct calculation,

[Ki,Kj ] = [J0i, J0j ] = i(g0iJ0j − g00J ij − gijJ00 + g0jJ i0),

= −iJ ij ;

= −2iεijkLk.

Likewise, we can directly compute the commutator between the L and K’s. This also will
follow by direct calculation.

[Li,Kj ] =
1
2
εlk[J ilk, J0j ],

=
1
2
εilki(gl0J ij − gi0J lj − gljJ i0 + gijJ l0),

= iεijkJ0k;

= iεijkKk.

We were also to show that the operators

J i
+ =

1
2
(Li + iKi) J i

− =
1
2
(Li − iKi),

could be seen to satisfy the commutation relations of angular momentum. First let us
compute,

[J+, J−] =
1
4

[
(Li + iKi), (Lj − iKi)

]
,

=
1
4

(
[Li, Lj ] + i[Ki, Lj ]− i[Li,Kj ] + [Ki, Kj ]

)
,

= 0.

In the last line it was clear that I used the commutator [Li,Kj ] derived above. The next
two calculations are very similar and there is a lot of ‘justification’ algebra in each step.
There is essentially no way for me to include all of the details of every step, but each can be
verified (e.g. i[Ki, Lj ] = −i[Lj , Ki] = (−i)iεjikKk = −εijkKk...etc). They are as follows:

[J i
+, Jj

+] =
1
4

[
(Li + iKi), (Lj + iKj)

]
,

=
1
4

(
[Li, Lj ] + i[Ki, Lj ] + i[Li,Kj ] + i[Li, Ki]− [Ki,Kj ]

)
,

=
1
4

(
iεijkLk − εijkKk − εijkKk + iεijkLk

)
,

= iεijk 1
2
(Lk + iKk) = iεijkJk

+.

Likewise,

[J i
−, Jj

−] =
1
4

[
(Li − iKi), (Lj − iKj)

]
,

=
1
4

(
[Li, Lj ]− i[Ki, Lj ]− i[Li,Kj ] + i[Li, Ki]− [Ki,Kj ]

)
,

=
1
4

(
iεijkLk + εijkKk + εijkKk + iεijkLk

)
,

= iεijk 1
2
(Lk − iKk) = iεijkJk

−.

‘óπερ ’έδει δεÄιξαι
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b) Let us consider first the (0, 1
2 ) representation. For this representation we will need to satisfy

J i
+ =

1
2
(Li + iKi) = 0 J i

− =
1
2
(Li − iKk) =

σi

2
.

This is obtained by taking Li = σi

2 and Ki = iσi

2 . The transformation law then of the (0, 1
2 )

representation is

Φ(0, 1
2 ) −→ e−iωµνJµν

Φ(0, 1
2 ),

= e−i(θiLi+βjKj)Φ(0, 1
2 ),

= e−
iθiσi

2 + βjKj

2 Φ(0, 1
2 ).

The calculation for the ( 1
2 , 0) representation is very similar. Taking Li = σi

2 and Ki = −σi

2 ,
we get

J i
+ =

1
2
(Li + iKi) =

σi

2
J i
− =

1
2
(Li − iKk) = 0.

Then the transformation law of the representation is

Φ( 1
2 ,0) −→ e−iωµνJµν

Φ( 1
2 ,0),

= e−i(θiLi+βjKj)Φ( 1
2 ,0),

= e−
iθiσi

2 − βjKj

2 Φ( 1
2 ,0).

Comparing these transformation laws with Peskin and Schroeder’s (3.37), we see that

ψL = Φ( 1
2 ,0) ψR = Φ(0, 1

2 ).

3. a) We are given that Ta is a representation of some Lie group. This means that

[Ta, Tb] = ifabcTc

by definition. Allow me to take the complex conjugate of both sides. Note that [Ta, Tb] =
[(−Ta), (−Tb)] in general and recall that fabc are real.

[Ta, Tb]∗ = (ifabcTc)∗,

[T ∗a , T ∗b ] = −ifabcT ∗c ,

∴ [(−T ∗a ), (−T ∗b )] = ifabc(−T ∗c ).

So by the definition of a representation, it is clear that (−T ∗a ) is also a representation of the
algebra.

b) As before, we are given that Ta is a representation of some Lie group. We will take the
Hermitian adjoint of both sides.

[Ta, Tb]† = (ifabcTc)†,

(TaTb)† − (TbTa)† = −ifabcT †c ,

T †b T †a − T †aT †b = −ifabcT †c ,

[T †b , T †a ] = −ifabcT †c ,

∴ [T †a , T †b ] = ifabcT †c .

So by the definition of a representation, it is clear that T †a is a representation of the algebra.
c) We define the spinor representation of SU(2) by Ta = σa

2 so that

T1 ≡ 1
2

(
0 1
1 0

)
T2 ≡ 1

2

(
0 −i
i 0

)
T3 ≡ 1

2

(
1 0
0 −1

)
.

We will consider the matrix S = iσ2. Clearly S is unitary because (iσ2)(iσ2)† = 1. Now,
one could proceed by direct calculation to demonstrate that

ST1S
† =

1
2

(
0 −1
−1 0

)
= −T ∗1 ST2S

† =
1
2

(
0 −i
i 0

)
= −T ∗2 ST3S

† =
1
2

( −1 0
0 1

)
= −T ∗3 .

This clearly demonstrates that the representation −T ∗a is equivalent to that of Ta.
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d) From our definitions of our representation of SO(3, 1) using J i
+ and J i

−, it is clear that

(J i
+)† = J i

−.

This could be expressed as if ( 1
2 , 0)† = (0, 1

2 ), or, rather L† = R. So what we must ask
ourselves is, does there exist a unitary matrix S such that

SLS† = L but SKS† = −K ?

If there did exist such a unitary transformation, then we could conclude that L and R
are equivalent representations. However, this is not possible in our SO(3, 1) representation
because both L and K are represented strictly by the Pauli spin matrices so that iK = L =
σ
2 . It is therefore clear that there cannot exist a transformation that will change the sign
of K yet leave L alone. So the representations are inequivalent.

‘óπερ ’έδει δεÄιξαι
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Physics 513, Quantum Field Theory
Homework 5

Due Tuesday, 7th October 2003

Jacob Lewis Bourjaily

1. We are to verify the identity

[γµ, Sρσ] = (J ρσ)µ
νγν .

It will be helpful to first have a good representation of (J ρσ)µ
ν . This can be obtained by raising

one of the indices of (J ρσ)λν which is defined in Peskin and Schroeder’s equation 3.18.

(J ρσ)µ
ν = gµλ(J ρσ)λν = igµλ(δρ

λδσ
ν − δρ

νδσ
λ),

= i(gµρδσ
ν − gµσδρ

ν).

We will use this expression for (J ρσ)µ
ν in the last line of our derivation below. We will proceed

by direct computation.

[γµ, Sρσ] =
i

4
([γµ, γργσ]− [γµ, γσγρ]) ,

=
i

4
({γµ, γρ}γσ − γρ{γµ, γσ} − {γµ, γσ}γρ + γσ{γµ, γρ}) ,

=
i

2
(gµργσ − γρgµσ − gµσγρ + γσgµρ) ,

= i (gµργσ − gµσγρ) ,

= i (gµρδσ
ν γν − gµσδρ

νγν) ,

= i (gµρδσ
ν − gµσδρ

ν) γν ,

∴ [γµ, Sρσ] = (J ρσ)µ
νγν .

‘óπερ ’έδει δε�ιξαι

2. All of the required identities will be computed by directly.
a) γµγµ = 4

γµγµ = (γ0)2 + (γ1)2 + (γ2)2 + (γ3)2 = 4.

b) γµ6kγµ = −26k
γµ6kγµ = γµγνkνγµ,

= (2gµν − γνγµ)kνγµ,

= 2kµγµ − γνkνγµγµ,

∴ γµ6kγµ = −26k
c) γµ6p6qγµ = 4p · q

γµ6p6qγµ = γµγνpνqργ
ργµ,

= (2gµν − γνγµ)pνqρ(2gρµ − γµρ),

= (2pµ−6pγµ)(2qµ−6qγµ),
= 4p · q − 26p6q − 26p6q + 46p6q,

∴ γµ6p6qγµ = 4p · q.
d) γµ6k6p6qγµ = −26p6q6k

By repeated use of the identity γµγν = 2gµν − γνγµ,

γµ6k6p6qγµ = γµγνkνγρpργ
σqσγµ,

= 2γµ6k6pqσgσµ − 2γµ6kpρg
ρµ6q + 2γµkνgνµ6p6q − 46k6p6q,

= 26q6k6p− 26p6k6q − 26k6p6q,
= 46qk · p− 26q6p6k − 4p · k6q,

∴ γµ6k6p6qγµ = −26p6q6k.

‘óπερ ’έδει δε�ιξαι
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3. We are to prove the Gordon identity,

ū(p′)γµu(p) = ū(p′)
[
(p′ + p)µ

2m
+

iσµνqν

2m

]
u(p).

Explicitly writing out each term in the brackets and recalling the anticommutation relations of
γµ, the right hand side becomes,

ū(p′)
[
(p′ + p)µ

2m
+

iσµνqν

2m

]
u(p) = ū(p′)

[
1

2m
(p′µ + pµ − ½γµγν(p− p′)ν + ½γνγµ(p− p′)ν)

]
u(p),

= ū(p′)
[

1
2m

(p′µ + pµ − ½γµγν(p− p′)ν + gνµ(p− p′)ν − ½γµγν(p− p′)ν)
]

u(p),

= ū(p′)
[

1
2m

(2p′µ − γµγν(p− p′)ν)
]

u(p),

= ū(p′)
[

1
2m

(2p′µ − γµ6p− γµ6p′)
]

u(p).

Now, recall that the Dirac equation for u(p) is

6pu(p) = mu(p).

Converting this for ū(p′)6p′, one obtains

ū(p′)6p′ = mū(p′).

Applying both of these equations where we left of, we see that

ū(p′)
[
(p′ + p)µ

2m
+

iσµνqν

2m

]
u(p) = ū(p′)

p′µ

m
u(p).

Looking again at the Dirac equation, mū(p′) = ū(p′)6p′ = ū(p′)γµp′µ, it is clear that

ū(p′)γµu(p) = ū(p′)
[
(p′ + p)µ

2m
+

iσµνqν

2m

]
u(p).

‘óπερ ’έδει δε�ιξαι

4. a) To demonstrate that γ5 ≡ iγ0γ1γ2γ3 anticommutes each of the γµ, it will be helpful to
remember that whenever µ 6= ν, γµγν = −γνγµ by the anticommutation relations. There-
fore, any odd permutation in the order of some γ′s will change the sign of the expression.
It should therefore be quite clear that

γ5γ0 = iγ0γ1γ2γ3γ0 = −iγ1γ2γ3 = −iγ0γ0γ1γ2γ3 = −γ0γ5;

γ5γ1 = iγ0γ1γ2γ3γ1 = iγ0γ2γ3 = −iγ1γ0γ1γ2γ3 = −γ1γ5;

γ5γ2 = iγ0γ1γ2γ3γ2 = −iγ0γ1γ3 = −iγ2γ0γ1γ2γ3 = −γ2γ5;

γ5γ3 = iγ0γ1γ2γ3γ3 = iγ0γ1γ2 = −iγ3γ0γ1γ2γ3 = −γ3γ5;

∴ {γ5, γµ} = 0.

‘óπερ ’έδει δε�ιξαι

b) We will first show that γ5 is hermitian. Note that the derivation relies on the fact that
(γ0)† = γ0 and (γi)† = −γi. These facts are inherent in our chosen representation of the γ
matrices.

(γ5)† = −i(γ0γ1γ2γ3)†,

= −i(γ3)†(γ2)†(γ1)†(γ0)†,

= iγ3γ2γ1γ0,

= −iγ2γ1γ0γ3,

= −iγ1γ0γ2γ3,

= iγ0γ1γ2γ3,

= γ5.
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Let us now show that (γ5)2 = 1.

(γ5)2 = −iγ3γ2γ1γ0iγ
0γ1γ2γ3,

= γ3γ2γ1γ0γ
0γ1γ2γ3,

= γ3γ2γ1γ
1γ2γ3,

= γ3γ2γ
2γ3,

= γ3γ
3,

= 1.

c) Note that εκλµν is only nonzero when κ 6= λ 6= µ 6= ν which leaves exactly 4! = 24 nonzero
terms from the 24 possible permutations. Also note that γκγλγµγν , like εκλµν , is totally
antisymmetric–any odd permutation of indices changes the sign of the argument. Therefore,
they change sign exactly together, εκλµνγκγλγµγν does not change sign. That is to say that
each of the 24 nonzero terms of εκλµνγκγλγµγν is identical to ε0123γ

0γ1γ2γ3. So

εκλµνγκγλγµγν = 24ε0123γ
0γ1γ2γ3 = −24

i
γ5,

∴ γ5 = − i

24
εκλµνγκγλγµγν .

This implies that
γ5 = −iεκλµνγ[κγλγµγν],

∴ γ[κγλγµγν] = −iεκλµνγ5.

5. We will begin by simply directly computing the form of ξ± from the eigenvalue equation

(p̂ · ½~σ) ξ±(p̂) = ±½ξ±(p̂).

Let us begin to expand the left hand side of the eigenvalue equation,

(p̂ · ½~σ) =
1
2

(
0 sin θ cos φ

sin θ cos φ 0

)
+

1
2

(
0 −i sin θ sin φ

i sin θ sin φ 0

)
+

1
2

(
cos θ 0

0 − cos θ

)
,

∴ (p̂ · ½~σ) =
1
2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
.

Note that we can see here that because this matrix has determinant −1 and trace 0, the eigen-
values must be are ±1. Therefore, we may write the eigenvalue equation as the system of
equations,

1
2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

) (
ξ1
±

ξ2
±

)
= ±1

2

(
ξ1
±

ξ2
±

)
.

These two equations are equivalent; I will use the first row of equations. This becomes

±ξ1
± = cos θξ1

± + sin θe−iφξ2
±.

Therefore,

ξ1
+ =

sin θe−iφξ2
+

1− cos θ
= e−iφ tan(θ/2)ξ2

+ and ξ1
− = − sin θe−iφξ2

−
1 + cos θ

= −e−iφ tan(θ/2)ξ2
−

So that

ξ+ =
(

e−iφ cot(θ/2)ξ2
+

ξ2
+

)
and ξ− =

( −e−iφ tan(θ/2)ξ2
−

ξ2
−

)
.

To find the normalization, we must apply the normalization conditions ξ†±ξ± = 1. By direct
calculation,

ξ†+ξ+ = 1 = (ξ2
+)2(cot2(θ/2) + 1),

=
(ξ2

+)2

sin2(θ/2)
,

∴ ξ2
+ = eiη+

sin(θ/2).
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Likewise for ξ−,

ξ†−ξ− = 1 = (ξ2
−)2(tan2(θ/2) + 1),

=
(ξ2
−)2

cos2(θ/2)
,

∴ ξ2
− = eiη− cos(θ/2).

Notice that if ξ+ satisfies ξ†ξ = 1 then so does ξ′ = eiηξ. So in solving the normalization
equations, we necessarily introduced an arbitrary phase η. Noting, this, spinors become

ξ+ = eiη+
(

e−iφ cos(θ/2)
sin(θ/2)

)
and ξ− = eiη−

( −e−iφ sin(θ/2)
cos(θ/2)

)
.

Lastly, we would like to set the phase η so that when the particle is moving in the +z−direction,
they reduce to the usual spin-up/spin-down forms. It should be quite obvious that η− = 0
satisfies this condition for ξ−. For ξ+, we will set the phase to η+ = φ so that we may lose the
e−iφ term when θ = 0. So we may write our final spinors as

ξ+ =
(

cos(θ/2)
eiφ sin(θ/2)

)
and ξ− =

( −e−iφ sin(θ/2)
cos(θ/2)

)
.

‘óπερ ’έδει δε�ιξαι
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Physics 513, Quantum Field Theory
Homework 6

Due Tuesday, 21st October 2003

Jacob Lewis Bourjaily

1. For the following derivations it will be helpful to recall the following:

Pψ(t, ~x)P† = ηaγ0ψ(t,−~x);

Pψ̄(t, ~x)P† = η∗aψ̄(t,−~x)γ0;

CψC† = −i(ψ̄γ0γ2)ᵀ;

Cψ̄C† = −i(γ0γ2ψ)ᵀ;

T ψ(t, ~x)T † = γ1γ3ψ(−t, ~x);

T ψ̄(t, ~x)T † = −ψ̄(−t, ~x)γ1γ3.

a) We are to verify the transformation properties of Aµ ≡ ψ̄γµγ5ψ and Tµν ≡ ψ̄σµνψ under
P.

Let us first consider the axial vector Aµ.

PAµP† = Pψ̄γµγ5ψP† = η∗aψ̄γ0γµγ5ηaγ0ψ,

= ψ̄γ0γµγ5γ0ψ,

= −ψ̄γ0γµγ0γ5ψ,

= −ψ̄γµγ5ψ = −Aµ.

The last step can be seen by noticing that

γ0γµγ0 =
{

γµ µ = 0
−γµ µ = 1, 2, 3

}
= γµ.

Now we will consider the transformation of the tensor Tµν .

PTµνP† = Pψ̄σµνψP† = η∗aψ̄γ0σµνηaγ0ψ,

= ψ̄γ0σµνγ0ψ,

= ψ̄σµνψ = Tµν .

Similar to the axial vector case, the last step is a result of directly verifying the identity

γ0σµνγ0 =
i

2
(γ0γµγνγ0 − γ0γνγµγ0) =

{
σµν µ, ν 6= 0 or µ, ν = 0
−σµν one of µ or ν = 0

}
= σµν .

‘óπερ ’έδει δε�ιξαι

b) We are to verify the transformation properties of V µ ≡ ψ̄γµψ and Aµ ≡ ψ̄γµγ5ψ under C.
Let us first consider the transformation of the vector V µ.

CV µC† = Cψ̄γµψC† = −i(γ0γ2)ᵀγµ(−i)(ψ̄γ0γ2)ᵀ,

= −ψ̄γ0γ2γµᵀγ0γ2ψ,

= ψ̄γ0γ2γµᵀγ2γ0ψ,

= −ψ̄γµψ = −V µ.

Let us now consider the axial vector Aµ.

CAµC† = Cψ̄γµγ5ψC† = −i(γ0γ2ψ)ᵀγµγ5(−i)(ψ̄γ0γ2)ᵀ,

= −ψ̄γ0γ2γ5γµᵀγ0γ2ψ,

= ψ̄γ0γ2γµᵀγ5γ0γ2ψ,

= −ψ̄γ0γ2γµᵀγ5γ2γ0ψ,

= −ψ̄γ0γ2γµᵀγ2γ0γ5ψ,

= ψ̄γµγ5ψ = Aµ.

‘óπερ ’έδει δε�ιξαι
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c) We are to confirm the transformation properties of P ≡ iψ̄γ5ψ and V µ ≡ ψ̄γµψ under T .
First let us consider the transformation of the pseudo-scalar P .

T PT † = T iψ̄γ5ψT † = −i(−ψ̄γ1γ3)γ5(γ1γ3ψ),

= iψ̄γ1γ3γ5γ1γ3ψ,

= −iψ̄γ5ψ = −P.

Let us now consider the transformation of the vector V µ.

T V µT † = T ψ̄γµψT † = ψ̄γ3γ1γµ∗γ1γ3ψ,

= ψ̄γµψ = Vµ.

‘óπερ ’έδει δε�ιξαι

2. a) We are to demonstrate the transformation properties of V µ and Aµ, as previously defined,
under CP.

We have almost computed every detail necessary for our solution in question (1) above.
The only transformation that we have not yet confirmed is the transformation of the vector
V µ under P. Let us compute that now.

PV µP† = Pψ̄γµψP† = η∗aψ̄γ0γµηaγ0ψ,

= ψ̄γ0γµγ0ψ,

= ψ̄γµψ = Vµ.

By simply applying our transformation properties derived above in succession, we observe
that,

V µ = ψ̄γµψ
P−−−−→ ψ̄γµψ

C−−−−→ −ψ̄γµψ = −Vµ

Aµ = ψ̄γµγ0ψ
P−−−−→ −ψ̄γµγ5ψ

C−−−−→ −ψ̄γµγ5ψ = −Aµ

b) Expecting an analogy with the electromagnetic current vector, we will check the transfor-
mation properties of each.

agree? agree? agree?

Jµ P−−−−→ Jµ Jµ C−−−−→ −Jµ Jµ CP−−−−→ −Jµ

V µ P−−−−→ Vµ yes V µ C−−−−→ −V µ yes V µ CP−−−−→ −Vµ yes

Aµ P−−−−→ −Aµ no Aµ C−−−−→ Aµ no Aµ CP−−−−→ −Aµ yes

c) We will demonstrate that the weak Lagrangian,

Lweak ≈ GF√
2

(Vµ −Aµ)(V µ −Aµ),

is not invariant under C or P, yet is invariant under CP .
Like before, I will directly compute all of the transformations using the table made above

in part (b) above. First note that

Lweak ∝ V 2 − 2VµAµ + A2.

When we take each of the of transformations from above, we see that

V 2 − 2VµAµ + A2 P−−−−→ V 2 + 2VµAµ + A2 6= Lweak;

V 2 − 2VµAµ + A2 C−−−−→ V 2 + 2VµAµ + A2 6= Lweak;

V 2 − 2VµAµ + A2 CP−−−−→ V 2 − 2VµAµ + A2 = Lweak.

So Lweak is not invariant under C or P by is under CP , as we were required to demonstrate.
‘óπερ ’έδει δε�ιξαι
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3. Let us define the product of the 3 discrete symmetry transformations as Θ ≡ CPT . We must
show that under Θ, the Dirac field transforms by the rule

Θψ(x)Θ† = γ5ψ∗(−x),

where
ψ∗(x) ≡ (ψ(x)†)ᵀ.

Like so many times before, we will proceed by direct calculation.

Θψ(x)Θ† = CPT ψ(t, ~x)T †P†C†,
= CPγ1γ3ψ(−t, ~x)P†C†,
= ηaCγ1γ3γ0ψ(−x)C†,
= −iηaγ1γ3γ0(ψ(−x)†γ2)ᵀ,

= −iηaγ1γ3γ0γ2ᵀψ∗(−x),

= −iηaγ0γ1γ3γ2ψ∗(−x),

= iηaγ0γ1γ2γ3ψ∗(−x),

= ηaγ5ψ∗(−x).
‘óπερ ’έδει δε�ιξαι

4. For the following derivations it will be useful to recall that

γ0
W =

(
0 1
1 0

)
, γi

W =
(

0 σi

−σi 0

)
,

where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

a) We must show that any new matrices defined by

γµ = Uγµ
W U†,

where U is an arbitrary 4 × 4 unitary matrix, satisfy the dirac algebra. This is proven by
demonstrating that

{γµ, γν} = 2gµν .

Knowing that the Weyl-representation γµ’s satisfy the Dirac algebra, we will directly show
that,

{γµ, γν} = {Uγµ
W U†, Uγν

W U†},
= Uγµ

W U†Uγν
W U† + Uγν

W U†Uγµ
W U†,

= U(γµ
W γν

W + γν
W γµ

W )U†,

= 2UgµνU† = 2gµν .

‘óπερ ’έδει δε�ιξαι

b) Consider the unitary matrix which produces the Dirac representation

UD =
1√
2

(
1 1
−1 1

)
.

We must show that UD is in fact unitary and we must find the matrices γµ in the Dirac
representation.

The unitarity of UD is trivial

UDU†
D =

1
2

(
1 1
−1 1

)(
1 −1
1 1

)
= 14×4.

When the matrices are directly computed, we see that

γ0 =
(

1 0
0 −1

)
, γi = γi

W .
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c) We must now show that in a general frame, the Dirac spinor takes the form,

us(p) =
( √

E + mξs

~σ · ~p ξs/
√

E + m

)
.

This is demonstrated by showing that it solves the Dirac equation, or, namely, that

γµpµus(p) = mus(p).

This is simple to evaluate directly. Noting our Dirac representation of the γµ’s and that
p0 = E, we see

γµpµus(p) =
(

p0 −~σ · ~p
~σ · ~p −p0

)( √
E + mξs

~σ · ~p ξs/
√

E + m

)
,

=




[
E
√

E + m− E2−m2√
E+m

]
ξs

[
~σ · ~p√E + m− E~σ·~p√

E+m

]
ξs


 ,

=

( √
E + m

(
E − E2−m2

E+m

)
ξs

~σ·~p√
E+m

(E + m− E)ξs

)
,

=
( √

E + m(E − E + m)ξs

m~σ · ~p ξs/
√

E + m

)
,

=
(

m
√

E + m ξs

m~σ · ~p ξs/
√

E + m

)
,

= mus(p).
‘óπερ ’έδει δε�ιξαι

d) We must show that the solution found in part (c) is normalized in the standard way.
Given that ξ is normalized such that ξξ† = 1, we see that

ūu = u†γ0u =
( √

E + m ξ† ~σ · ~p ξ†/
√

E + m
) (

1 0
0 −1

)( √
E + m ξ

~σ · ~p ξ/
√

E + m

)
,

= ξ†ξ
(

(E + m)− (~σ · ~p)2

E + m

)
,

=
E2 + 2mE + m2 − ~p2

E + m
,

=
E2 + 2mE + m2 − E2 + m2

E + m
,

=
2mE + 2m2

E + m
,

= 2m.

‘óπερ ’έδει δε�ιξαι
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Homework 7

Due Tuesday, 4th November 2003

Jacob Lewis Bourjaily

Symmetry Factors
Throughout the following derivations it will be helpful to state explicitly a method to obtain the

symmetry factor for a given diagram. The method is derived from the published lecture notes of Professor
Colin Morningstar of Carnegie Mellon University.1

The symmetry factor of a given diagram is given by

S =
n!(η)n

r
,

where n is number of vertices, η is a coupling constant, and r is the multiplicity of the diagram. The
value of η is 4! in φ4-theory and 3! in Yukawa theory. This pattern implies η will be 4 for question 1(b)
below.

To determine the multiplicity r, all external points are labelled and all vertices are drawn with four
(or three) lines emerging. All of these lines are assumed to be distinguishable. The total number of ways
to connect the external points and vertices to form the diagram equals the multiplicity r. If a diagram
is direction sensitive, then this is taken into account by only including the number of ways to draw the
diagram given the directional conditions onf the external points.

1. a) We are to determine the symmetry factor for four diagrams.

r = 4 · 3 = 12 and n = 1 so S = 1!(4!)1

12 = 2.�
r = 8 · 4 · 3 · 2 = 192 and n = 2 so S = 2!(4!)2

192 = 6.�
r = 8 · 3 · 4 · 3 · 2 = 576 and n = 2 so S = 2!(4!)2

576 = 2.�
r = 12 · 3 · 8 · 3 · 4 · 3 · 4 · 2 = 82944 and n = 3 so S = 3!(4!)3

82944 = 1.�
b) We are to determine the symmetry factors for the following diagrams.

r = 2 · 2 = 4 and n = 1 so S = 1!(4)1

4 = 1.�
r = 4 · 2 · 2 · 2 = 32 and n = 2 so S = 2!(4)2

32 = 1.�
r = 4 · 2 · 2 = 16 and n = 2 so S = 2!(4)2

16 = 2.�
1Chapter 9, page 141. Available at http://www.andrew.cmu.edu/course/33-770/.

1
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2. a) We are asked to draw all distinct Feynman diagrams for the four point function of the φ4-theory
given below to the order λ2.

� =

����+ + +

i ii iii iv
b) We are to calculate the contributions from each diagram. Note that I have included explicit

symmetry conservation in the above diagrams. For example, for contribution (ii), I have made
the substitutions k1 = k and k2 = k − p1 − p2; I have made similar substitutions for the other
diagrams as well. Thus, including symmetry factors, the contributions are,

i) (−iλ)(2π)4δ(4)(p3 + p4 − p1 − p2);

ii)
(−iλ)2

2

∫
d4k

(2π)4
(2π)4δ(4)(p3 + p4 − p1 − p2)

i

(k2 −m2 + iε)
i

((k − p1 − p2)2 −m2 + iε)
;

iii)
(−iλ)2

2

∫
d4k

(2π)4
(2π)4δ(4)(p3 + p4 − p1 − p2)

i

(k2 −m2 + iε)
i

((k + p1 − p3)2 −m2 + iε)
;

iv)
(−iλ)2

2

∫
d4k

(2π)4
(2π)4δ(4)(p3 + p4 − p1 − p2)

i

(k2 −m2 + iε)
i

((k + p1 − p4)2 −m2 + iε)
.

3. a) We are to draw all of the Feynman diagrams up to order λ or g2 for the scattering process
pA + pB → pa + p3. These are given below.

� � � �
b) Like part (a) above, we are to draw all of the Feynman diagrams of order gλ for the process

pA + pB → p1 + p2 + p3. Note that the labels are implied after the first diagram on the left of
each row. There are 10, and they are given below.

�����

�����
c) It is clear that all of the symmetry factors are 1. I have directly computed them, but it is

unnecessary to repeat those trivial calculations here. Rather, it is enough to notice that there
are no loops in any of the diagrams. Each vertex connects unique, distinguishable fields. This
is equivalent to the observation that the topology of each diagram above was enough to specify
it entirely. Therefore, all symmetry factors are 1.



Physics 513, Quantum Field Theory
Homework 8

Due Tuesday, 11th November 2003

Jacob Lewis Bourjaily

Problem 4.1
We are to consider the problem of the creation of Klein Gordon particles by a classical source. This

process can be described by the Hamiltonian

H = Ho +
∫

d3x − j(x)φ(x),

where Ho is the Klein-Gordon Hamiltonian, φ(x) is the Klein-Gordon filed, and j(x) is a c-number scalar
function. Let us define the number λ by the relation

λ =
∫

d3p

(2π)3
1

2Ep
|j̃ (p)|2.

a) We are to show that the probability that the source creates no particles is given by

P (0) =
∣∣∣∣〈0|T

{
exp

[
i

∫
d4x j(x)φI(x)

]}
|0〉

∣∣∣∣
2

.

Without loss of understanding we will denote φ ≡ φI . Almost entirely trivially, we see that

HI = −
∫

d3x j(x)φ(x).

Therefore,

P (0) =
∣∣∣∣〈0|T

{
exp

[
−i

∫
dt′ HI(t′)

]}
|0〉

∣∣∣∣
2

,

=
∣∣∣∣〈0|T

{
exp

[
i

∫
d4x j(x)φ(x)

]}
|0〉

∣∣∣∣
2

.

‘óπερ ’έδει δε�ιξαι

b) We are to evaluate the expression for P (0) to the order j2 and show generally that P (0) =
1− λ +O(λ2).

First, let us only consider the amplitude for the process. We can make the näıve expansion

〈0|T
{

exp
[
i

∫
d4x j(x)φ(x)

]}
|0〉 = 〈0|1|0〉+ i

∫
d4x j(x)〈0|φ(x)|0〉 − . . . .

For every odd power of the expansion, there will be at least one field φIo that cannot be contracted
from normal ordering and therefore will kill the entire term. So only even terms will contribute to
the expansion. It should be clear that the amplitude will be of the form ∼ 1−O(j2)+O(j4)−. . ..
Let us look at the O(j2) term. That term is given by

〈0|T
{
−½

(∫
d4x j(x)φ(x)

)2
}
|0〉 = −1

2

∫
d4xd4y j(x)j(y)〈0|T{φ(x)φ(y)}|0〉,

= −1
2

∫
d4xd4y j(x)j(y) DF (x− y),

= −1
2

∫
d4xd4y

∫
d4p

(2π)4
i

p2 −m2 + iε
e−ip(x−y)j(x)j(y),

= −1
2

∫
d4p

(2π)4

∫
d4x j(x)e−ipx

︸ ︷︷ ︸
j̃ (p)

∫
d4y j(y)eipy

︸ ︷︷ ︸
j̃ ∗(p)

i

p2 −m2 + iε
,

= −1
2

∫
d4p

(2π)4
|j̃ (p)|2 i

p2 −m2 + iε
,

= −1
2

∫
d3p

(2π)3

∫
dp0

(2π)
|j̃ (p)|2 i

p2 −m2 + iε
.

1
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We know how to evaluate the integral
∫

dp0

(2π)
|j̃ (p)|2 i

p2 −m2 + iε
=

∫
dp0

(2π)
|j̃ (p)|2 i

(p0)2 − E2
p + iε

,

=
∫

dp0

(2π)
|j̃ (p)|2 i

(p0 − Ep)(p0 + Ep)
.

The function has a simple pole at p0 = −Ep with the residue

i|j̃ (p)|2
p0 − Ep

∣∣∣∣
p0=−Ep

= − i|j̃ (p)|2
2Ep

.

We know from elementary complex analysis that the contour integral is 2πi times the residue at
the pole. Therefore,

−1
2

∫
d3p

(2π)3

∫
dp0

(2π)
|j̃ (p)|2 i

p2 −m2 + iε
= −1

2

∫
d3p

(2π)3
1

2Ep
|j̃ (p)|2,

= −1
2
λ.

Because we now know the amplitude to the first order of λ (or, rather, the second order of j),
we have shown, as desired, that

P (0) = |1− ½λ + . . . |2 ∼ 1− λ +O(λ2).
‘óπερ ’έδει δε�ιξαι

c) We must represent the term computed in part (b) as a Feynman diagram and show that the
whole perturbation series for P (0) in terms of Feynman diagrams is precisely P (0) = e−λ.

The term computed in part (b) can be represented by faf ≡ −λ. It has two points (neither
originated by the source) and a time direction specified (not to be confused with charge or
momentum). We can write the entire perturbation series as

P (0) =
∣∣∣∣〈0|T

{
exp

[
i

∫
d4x j(x)φ(x)

]}
|0〉

∣∣∣∣
2

=


1 +faf+ faffaf +

faffaffaf +

faffaffaffaf + · · ·




2

.

To get the series we must figure out the correct symmetry factors. If one begins with 2n
vertices, then n of them must be chosen as ‘in’; there are 22n/2 = 2n ways to do this. After that,
each one of the ‘in’ vertices must be paired with one of the ‘out’ vertices; you can do this n!
ways. So the symmetry factor for the term with n uninteracting propagators is

S(n) = 2n · n!.

We may now compute the probability explicitly.

P (0) =


1 +faf+

faffaf +
faffaffaf +

faffaffaffaf + · · ·




2

,

=

( ∞∑
n=0

(−λ)n

2nn!

)2

,

=

( ∞∑
n=0

(−λ/2)n

n!

)2

,

=
(
e−λ/2

)2

,

∴ P (0) = e−λ.
‘óπερ ’έδει δε�ιξαι
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d) Let us now compute the probability that the source creates one particle of momentum k. First
we should perform this computation to O(j) and then to all orders using the same trick as in
part (c) to sum the series.

Let us calculate the amplitude that a particle is created with the explicit momentum k.

〈0|T
{

φk exp
[
i

∫
d4x j(x)φ(x)

]}
|0〉

= i

∫
d4x j(x)〈0|ak

∫
d3p

(2π)3
1√
2Ep

(
ape−ipx + a†peipx

) |0〉|0〉,

= i

∫
d4x j(x)〈0|ak

∫
d3p

(2π)3
1√
2Ep

a†peipx|0〉,

= i

∫
d4x j(x)〈0|

∫
d3p

(2π)3
1√
2Ep

eipx(2π)3δ(3)(p− k)|0〉,

= i

∫
d4x

(2π)4
j(x)√
2Ek

eikx,

=
ij̃ (k)√

2Ek

.

Now, the probability of creating such a particle is the modulus of the amplitude.

P (1k) =
|j̃(x)|2
2Ek

.

We can compute the probability that a particle is created with any momentum by simply inte-
grating over all the possible k. This yields

P (1) =
∫

d3k

(2π)3
1

2Ek
|j̃ (x)|2 = λ.

Therefore in Feynman graphs, xfef ≡ i
√

λ. The entire perturbation in Feynman diagrams is
therefore

P (1) =


xfef×


1 +faf+

faffaf +
faffaffaf +

faffaffaffaf + · · ·







2

,

=
∣∣∣i
√

λeλ/2
∣∣∣
2

,

∴ P (1) = λe−λ.

e) We are to show that the probability of producing n particles is given by a Poisson distribution.
From part (d) above, we know that each creation vertex on the Feynman diagram must be

multiplied by i
√

λ. Now, because each of the final products are identical and there are n! ways
of arranging them, the symmetry factor in each case is n!. The probability is approximated by

P (n) ∼ λn

n!
.

Like we have done before, to get the correct probability, we must take into account the probability
that no particle is created. Therefore,

P (n) =
λne−λ

n!
.

f) We must show that a poisson distribution given above with parameter λ has a norm of 1, an
expectation value of λ, and a variance of λ.
First, let us compute the norm of the distribution function.

∞∑
n=0

λn

n!
eλ = e−λ

∞∑
n=0

λn

n!
= e−λeλ = 1.
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The expectation value for the number created is simply,

E(n) =
∞∑

n=0

nλn

n!
e−λ = λe−λ

∞∑
n=1

λn−1

(n− 1)!
= λe−λ

∞∑
m=0

λm

m!
= λe−λeλ = λ.

To compute the variance, we will use the relation V ar(n) = E(n2) − E(n)2. Let us compute
E(n2).

E(n2) =
∞∑

k=0

n2 λn

n!
e−λ,

= λe−λ
∞∑

n=1

n
λn−1

(n− 1)!
,

= λe−λ
∞∑

n=1

((n− 1) + 1)
λn−1

(n− 1)!
,

= λe−λ

[ ∞∑
n=1

(n− 1)
λn−1

(n− 1)!
+

∞∑
n=1

λn−1

(n− 1)!

]
,

= λe−λeλ + λe−λ
∞∑

n=1

λn−1

(n− 2)!
,

= λ+λ2e−λ
∞∑

n=2

λn−2

(n− 2)!
,

= λ2 + λ.

Knowing this, it is clear that

V ar(n) = λ2 + λ− λ = λ.

Problem 4.4
The cross section for scattering of an electron by the Coulomb field of a nucleus can be computed, to

lowest order, without quantizing the electromagnetic field. We will treat the field as a given. classical
potential Aµ(x). The interaction Hamiltonian is then

HI =
∫

d3x eψ̄γµψAµ,

where ψ(x) is the usual quantized Dirac field.

a) We must show that the T -matrix element for an electron scatter to off a localized classical
potential is given to the lowest order by

〈pf |iT |pi〉 = −ieū(pf )γµu(pi) · Ãµ(pf − pi).

where Ãµ is the Fourier transform of Aµ.
We may compute this contribution directly.

〈pf |iT |p〉 = −i

∫
d4x〈pf |T{HI(x)}|pi〉,

= −ie

∫
d4x Aµ〈pf |T{ψ̄(x)γµψ(x)}|pi〉,

= −ie

∫
d4x Aµ〈pf |ψ(x)γµψ(x)|pi〉,

= −ie

∫
d4x Aµ(x)us′(pf )γµus(pi)eix(pf−pi),

= −ieus′(pf )γµus(pi)
∫

d4x Aµ(x)eix(pf−pi),

= −ieus′(pf )γµus(pi)Ãµ(pf − pi).
‘óπερ ’έδει δε�ιξαι
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b) If Aµ(x) is time independent, its Fourier transform contains a delta function of energy. We
therefore define

〈pf |iT |pi〉 ≡ iM· (2π)δ(Ef − Ei).
Given this definition of M, we must show that the cross section for scattering off a time-
independent localized potential is given by

dσ =
1
vi

1
2Ei

d3pf

(2π)3
1

2Ef
(2π)δ(Ef − Ei)|M(pi → pf )|2.

From class we know that we can represent an incoming wave packet with momentum pi in
the z-direction and impact parameter b by the relation

|ψb〉 =
∫

d3pi

(2π)3
1√
2Epi

e−ibpiψ(pi)|pi〉.

The probability of interaction given an impact parameter is then

P (b) =
d3pf

(2π)3
1

2Ef
|〈pf |iT |ψb〉|2,

=
d3pf

(2π)3
1

2Ef

∫
d3pid

3k

(2π)6
1√

2Epi
2Ek

e−ib(pi−k)ψ(pi)ψ∗(k)〈pf |iT |pi〉〈pf |iT |k〉∗,

=
d3pf

(2π)3
1

2Ef

∫
d3pid

3k

(2π)6
e−ib(pi−k)

√
2Epi2Ek

ψ(pi)ψ∗(k)(2π)2δ(Ef − Epi)δ(Ef − Ek)M(pi → pf )M(k → pf )∗.

Therefore,

dσ =
∫

d2b P (b),

=
d3pf

(2π)3
1

2Ef

∫
d2b

d3pd3k

(2π)6
e−ib(p−k)

√
2Ep2Ek

ψ(p)ψ∗(k)(2π)2δ(Ef − Ep)δ(Ef − Ek)M(p → pf )M(k → pf )∗,

=
d3pf

(2π)3
1

2Ef

∫
d3pd3k

(2π)6
ψ(p)ψ∗(k)√

2Ep2Ek

(2π)2δ(2)(p⊥ − k⊥)δ(Ef − Ep)δ(Ef − Ek)M(p → pf )M(k → pf )∗,

=
d3pf

(2π)3
1

2Ef

1
|vi| (2π)

∫
d3pd3k

(2π)3
ψ(p)ψ∗(k)√

2Ep2Ek

δ(2)(p⊥ − k⊥)δ(pz − kz)δ(Ef − Ep)M(p → pf )M(k → pf )∗,

=
d3pf

(2π)3
1

2Ef

1
|vi| (2π)

∫
d3p

(2π)3
1

2Ep
|ψ(p)|2δ(Ef − Ep)|M(p → pf )|2,

With a properly normalized wave function, this reduces directly to (allow me to apologize for
the inconsistency with notation. It is hard to keep track of. The incoming momentum p has
energy Ei.)

dσ =
1
vi

1
2Ei

d3pf

(2π)3
1

2Ef
(2π)δ(Ef − Ei)|M(pi → pf )|2.

‘óπερ ’έδει δε�ιξαι

Now, let us try to write an expression for dσ/dΩ.
∫

dσ =
∫

d3pf

(2π)3
1
vi

1
2Ei

1
2Ef

(2π)δ(Ef − Ei)|M|2,

=
∫

p2
fdpfdΩ
(2π)2

1
vi

1
2Ef2Ei

1
vf

δ(p′ − p)|M|2,

=
∫

dΩ
(2π)2

p2

4v2
i E2

i

|M|2,

=
∫

dΩ
1

16π2
|M|2.

Therefore, we have that
dσ

dΩ
=

1
16π2

|M|2.
‘óπερ ’έδει δε�ιξαι
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c) We will now specialize to the non-relativistic scattering of a Coulomb potential (A0 = Ze/4πr).
We must show that in this limit

dσ

dΩ
=

α2Z2

4m2v4 sin4(θ/2)
.

Let us first take the Fourier transform of the Coulomb potential.

Ãµ(k) =
Ze

4π

∫
d3r

eikr

r
,

=
Ze

4π

4π

k2
,

∴ Ãµ(k) =
Ze

k2
.

From part (a) above, we calculated that

M = −ieus′(pf )γµus(p)Ãµ(pf − p),

=
−ie2Z

(pf − p)2
us′(pf )γ0us(p).

In the nonrelativistic limit, E >> p so we may approximate that

us′(pf )γ0us(p) = us′†(pf )us(p) = 2Eδs′s.

Therefore, our amplitude becomes

M =
−ie2Z

(pf − p)2
2Eδs′s.

From part (b), we may compute dσ/dΩ directly.

dσ

dΩ
=

4Z2e4E62
16π2(pf − p)4

,

=
Z2α2E2

p4(1− cosθ)2
,

=
Z2α2E2

4p4 sin4(θ/2)
,

=
Z2α2

4E2v4 sin4(θ/2)
.

In the nonrelativistic limit, we have that E2 ∼ m2. Therefore we may conclude as desired that

dσ

dΩ
=

α2Z2

4m2v4 sin4(θ/2)
.

‘óπερ ’έδει δε�ιξαι
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Homework 9

Due Tuesday, 18th November 2003

Jacob Lewis Bourjaily

The Decay of Vector into Two Scalars
We are to compute the decay rate of unpolarized vector particles of mass M into two scalars of mass

m. We should calculate the decay rate in the rest frame.
Defining p̃µ = (p̄− p)µ, the amplitude for the decay diagram is given by

�kµ

p̄µ

pµ

= iM = εµif p̃µ.

It is quite straightforward to calculate the spin-averaged square of the amplitude,

|M|2 =
1
3

∑

spin

εµif p̃µε∗ν(−i)fp̃ν ,

=
f2

3

(
kµkν

M2
− gµν

)
p̃µp̃ν ,

=
f2

3

(
(kµp̃µ)2

M2
− p̃2

)
.

Now, because we are computing this in the rest frame where kµ = (M, 0) and p̃µ = (0,−2|~p|), kµp̃µ = 0.
Similarly, we know that p̃2 = 4|~p|2. Therefore,

|M|2 =
4f2|~p|2

3
.

Note that |~p| = E2 − m2 =
(

M2

4 −m2
)1/2

. Using this and the equation for the decay rate found in
Peskin and Schroeder,

Γ =
1

2M

∫
dΩ

16π2

|~p|
M
|M|2,

=
1

2M

∫
dΩ

16π2

|~p|
M

4f2|~p|2
3

,

=
f2

24π2M2

∫
dΩ|~p|3,

∴ Γ =
f2

(
M2

4 −m2
)3/2

6πM2
.

Mott’s Formula
We are to generalize problem 2 of Homework 8 in the relativistic case. We computed then the general

amplitude to be

M =
−ie2Z

(pf − p)2
ūs′(pf )γ0us(p).

To compute the spin averaged amplitude, it will be helpful to recall our earlier kinematic result that
(pf − p)4 = 16|~p|4 sin4 θ/2. Let us now compute the amplitude squared in the spin-averaged case.

|M|2 =
1
2

Z2e4

(pf − p)4
∑

spin

ūs(p)γ0us′(pf )ūs′(pf )γ0us(p),

=
Z2e4

32|~p|4 sin4 θ/2
Tr

(
γ0(6pf + m)γ0(6p + m)

)
.

It will be helpful to break up the trace into its four additive pieces.

Tr
(
γ0(6pf + m)γ0(6p + m)

)
= Tr

(
γ06pfγ06p)

+ Tr
(
γ0mγ06p)

+ Tr
(
γ06pfγ0m

)
+ Tr

(
γ0mγ0m

)
.

1
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It should be clear that the two middle terms are both zero because there is an odd number of γ’s. The
last term is nearly trivial, Tr

(
γ0mγ0m

)
= 4m2. Let us now work on the first term.

Tr
(
γ06pfγ06p)

= pfµ
pνTr

(
γ0γµγ0γν

)
,

= 4pfµpν

(
g0µg0ν − g00gµν + g0νgµ0

)
,

= 4
(
2E2 − pfµpµ

)
,

= 4
(
2E2 − E2 + ~pf~p

)
,

= 4
(
E2 + |~p|2 cos θ

)
.

Using these results, we have that

|M|2 =
Z2e4

8|~p|4 sin4 θ/2

[
E2 + |~p|2 cos θ + m2

]
,

=
Z2e4

8|~p|4 sin4 θ/2

[
2E2 − |~p|2(1− cos θ)

]
,

=
Z2e4

8|~p|4 sin4 θ/2

[
2E2 − 2|~p|2 sin2 θ/2

]
,

=
Z2e4E2

4|~p|4 sin4 θ/2

[
1−

( |~p|
E

)2

sin2 θ/2

]
,

=
Z2e4

4β2|~p|2 sin4 θ/2

[
1− β2 sin2 θ/2

]
.

In the last two lines we have used the fact that ~p/E = β. Now, we showed in Homework 8 that

dσ

dΩ
=
|M|2
16π2

.

Using the fine structure constant to simplify notation, where α2 = e4

16π2 , it is clear that

∴ dσ

dΩ
=

Z2α2

4β2|~p|2 sin4 θ/2

[
1− β2 sin2 θ/2

]
.

Helicity Amplitudes in Yukawa Theory
We are to consider the amplitude given by,

iM =�p k

p′ k′
+�p k

k′p′p′

= (−ig2)
(
ū(p′)u(p) 1

(p′−p)2−m2
φ
ū(k′)u(k)− ū(p′)u(k) 1

(p′−k)2−m2
φ
ū(k′)u(p)

)
.

a) We are to derive the selection rules for helicity for this theory.
We can best understand the selection rules by requiring that one of the spinors is in a projec-

tion. To bring the projection operator to the neighboring spinor (in either diagram and starting
from any outside term) requires that the projection anticommutes through a γ0. Therefore, the
interaction must flip the spins. Exempli Gratia, ū 1+γ5

2 uR = u†γ0 1+γ5

2 uR = ūLuR.

b) Given these selection rules, what are the non-vanishing amplitudes? These are the only possi-
ble terms that involve both incoming states flipping their spin in the outgoing states. So, the
nonzero amplitudes are MLL;RR,MRR;LL,MLR;RL,MRL;LR,MRL;RL,MLR;LR.

c) We are to use problem 5 of Homework 5 to compute the explicit form of the two-spinors. We
should use this to find the eigenvectors uλ(p) at very high energies. This is a relatively straight
forward calculation. We derived quite some time ago that in the high energy limit for general
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spinors. Using the helicity basis derived in Homework 5, we see that

uR =
√

2E




0
0

−e−iφ sin θ/2
cos θ/2


 and uL =

√
2E




cos θ/2
eiφ sin θ/2

0
0


 .

d) Now we should rederive the selection rules from part (a). This is relatively straight forward. Let
us compute directly the ūR and ūL These two are simply,

ūR =
(
−
√

2Eeiφ sin θ/2,
√

2E cos θ/2, 0, 0
)

and ūL =
(
0, 0,

√
2E cos θ/2,

√
2Ee−iφ sin θ/2

)
.

It should be clear that in this limit, ūRuR = 0 because the have opposite zeros. Therefore, we
may again conclude that the only inner products that do not vanish are those which flip the spin
at the vertex. This is the same relationship seen intuitively in part (a).

e) We must now compute the nonvanishing inner produces of the eigenvectors that we mentioned
above. Let us compute each in turn directly.

ūR(p′)uL(p) = −2Eeiφ sin θ/2;

ūL(p′)uR(p) = 2Ee−iφ sin θ/2;

ūR(k′)uL(p) = −2Eeiφ cos θ/2;

ūL(k′)uR(p) = 2Ee−iφ cos θ/2;

ūR(p′)uL(k) = 2Eeiφ cos θ/2;

ūL(p′)uR(k) = −2Ee−iφ cos θ/2;

ūR(k′)uL(k) = 2Eeiφ sin θ/2;

ūL(k′)uR(k) = −2Ee−iφ sin θ/2.

f) Let us compute the amplitudes MRR;LL and MLR;LR in the limit of very high energy. We use
the limit to reduce |~p|2-like terms to E2. These are directly computed to be

MRR;LL = −g2

(
(−2Eeiφ sin θ/2)

1
4E2 sin2 θ/2

2Eeiφ sin θ/2− 2Eeiφ cos θ/2
1

−4E2 cos2 θ/2
(−2Eeiφ cos θ/2)

)
,

= g2(eiφ + eiφ),

∴ MRR;LL = 2g2eiφ.

By a similar calculation,

MLR;LR = −g2

(
2Ee−iφ cos θ/2

1
−4E2 cos2 θ/2

(−2Eeiφ cos θ/2)
)

,

∴ MLR;LR = −g2.

g) Let us determine the spin averaged amplitude squared. The contributions are very similar to
the two above (in fact, the amplitudes are identical so we just multiply). We see

|M|2 =
1
4

(
2(2g2)2 + 4g4

)
,

∴ |M|2 = 3g4.
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Homework 10

Due Tuesday, 25th November 2003

Jacob Lewis Bourjaily

Electron-Electron Scattering We are to consider the elastic scattering of two electrons (M 6 oller
scattering) in Quantum Electrodynamics.

a) We are to draw the two tree-level Feynman diagrams for the scattering amplitude. We see that
they are,

iMλ′µ′;λµ =�k p

k′ p′

e− e−

−�k p

p′

e− e−

k′k′

t-channel u-channel

= ie2

[
ūµ′(k′)γµuµ(k)

1
(k − k′)2

ūλ′(p′)γµuλ(p)− ūµ′(k′)γµuλ(p)
1

(p− k′)2
ūλ′(p′)γµuµ(k)

]
.

The relative minus sign is a simple consequence of Fermi statistics.

b) Using the Gordon identity, derived in homework 5 problem 3, we are to derive a simple form of
the amplitude for the forward most direction. Here we will assume that p′ ∼ p. So,

ūλ′(p′)γµuλ′(p) = ūλ′(p′)
[
(p′ + p)µ

2m
+

iσµν(p′ − p)ν

2m

]
uλ(p),

= ūλ′(p)
[
(p + p)µ

2m
+

iσµν(p− p)ν

2m

]
uλ(p),

= ūλ′(p)
pµ

m
uλ(p),

= 2pµδλ′λ.

‘óπερ ’έδει δε�ιξαι

c) In the forward most direction, it is clear that the denominator for the t-channel contribution
is small and the denominator for the u-channel contribution is large so only the t-channel
contributions are relevant. In the t-channel amplitude, it is clear that spin cannot flip so
that spin of the initial and final particles are the same. Therefore, the important terms are
MLL;LL,MRR;RR,MRL;RL,MLR;LR.

d) In contrast to part (c), only the u-channel contributions are important so the final spin states
may be switched. So the important amplitudes are MLL;LL,MRR;RR,MLR;RL,MRL;LR.

1
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e) Using parts (a) and (b), we may compute,

MPR;LR = e2ūµ′(k)γµuµ(k)
1

(k − k′)2
ūλ′(p)γµuλ(p),

=
e2

−2~k2(1− cos θ)
4kµpµ,

=
e2

−~k2 sin2 θ/2
kµpµ,

=
e2

−~k2 sin2 θ/2

(
E2

cm

4
+ ~k2

)
,

=
e2

(
E2

cm

2 −m2
)

−
(

E2
cm

4 −m2
)

sin2 θ/2
,

= − 2e2
(
E2

cm − 2m2
)

(E2
cm − 4m2) sin2 θ/2

.

f) We now should compute the differential cross section with respect to the scattering angle θ.

dσ

d cos θ
= 2π

dσ

dΩ
,

=
2π|M|2
64π2E2

cm

,

=
2πα24

(
E2

cm − 2m2
)2

4E2
cm (E2

cm − 4m2)2 sin4 θ/2
,

∴ dσ

d cos θ
=

2πα2
(
E2

cm − 2m2
)2

E2
cm (E2

cm − 4m2)2 sin4 θ/2
.

‘óπερ ’έδει δε�ιξαι

A Delicate Balance Consider the reactions a+ b → a′+ b′ and a′+ b′ → a+ b. These four particles
may all have different masses and different spins given by sa, sb, sa′ , sb′ . We are to compute the ratio of
differential cross sections with respect to solid angle Ω for the two processes.

Because of the enormous symmetry of the two processes, it will suffice to demonstrate a calculation
of one of the processes. We will assume the process is time reversal so that the amplitude squared is the
same for both. Let us compute the differential cross section.

dσ

dΩ
(a + b → a′ + b′) =

~p

2Ea2Eb|va − vb|(2π)24Ecm

|M(sum)|2
(2sa + 1)(2sb + 1)

,

=
~p|M(sum)|2

64π2EaEb~p(1/Ea + 1/Eb)Ecm(2sa + 1)(2sb + 1)
,

=
|M(sum)|2

64π2EaEb(1/Ea + 1/Eb)(Ea + Eb)(2sa + 1)(2sb + 1)
,

=
|M(sum)|2

64π2(Ea + Eb)2(2sa + 1)(2sb + 1)
,

=
|M(sum)|2

64π2k2(2sa + 1)(2sb + 1)
.

Now, it is clear by symmetry that this implies

dσ

dΩ
(a′ + b′ → a + b) =

|M(sum)|2
64π2k′2(2sa′ + 1)(2sb′ + 1)

.

∴
dσ
dΩ (a + b → a′ + b′)
dσ
dΩ (a′ + b′ → a + b)

=
k′2(2sa′ + 1)(2sb′ + 1)
k2(2sa + 1)(2sb + 1)

.

‘óπερ ’έδει δε�ιξαι
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Fermion Annihilation in Yukawa Theory We are to consider the process of fermion anti-fermion
annihilation into to scalars ff̄ → φφ.

a,b) The two Feynman diagrams for the S-matrix in the tree approximation are,

iM =�kk
′

p

p′
+�k p′

p

k′k′

t-channel u-channel

= (−ig2)
[
u2(p)

6p−6p′ + m

(p− p′)2 −m2
v̄r(k) + us(p)

6p−6k′ + m

(p− k′)2 −m2
v̄r(k)

]
.

c) The relative sign is because of Bose statistics.



Physics 513, Quantum Field Theory
Homework 11

Due Thursday, 4th December 2003

Jacob Lewis Bourjaily

The Dirac Propagator
a) The Dirac propagator is defined as the time-ordered two point correlator

SF (x− y)ab = 〈0|T{ψa(x)ψ̄b(y)}|0〉 =
{ 〈0|ψa(x)ψ̄b(y)|0〉 x0 > y0

−〈0|ψ̄b(y)ψa(x)|0〉 y0 > x0 .

We are to evaluate SF (x− y)ab for a free Dirac field ψ.
Let us first compute this for the case when x0 > y0; the other case will follow trivially from

symmetry arguments. Dropping all obviously zero terms, we may immediately write that

SF (x− y)ab = 〈0|
∫

d3p

(2π)3
d3p′

(2π)3
1√

2Ep2Ep′
ei(p′y−px)

∑

spin

(
as
pas′†

p′ us
a(p)ūs′

b (p′)
)
|0〉.

Now, we know that 〈0|as
pas′†

p′ |0〉 = (2π)3δ(3)(p− p′)δss′ so

SF (x− y)ab =
∫

d3p

(2π)3
1

2Ep
e−ip(x−y)

∑

spin

us
a(p)ūs

b(p),

=
∫

d3p

(2π)3
1

2Ep
(6p + m)abe

−ip(x−y),

∴ SF (x− y)ab = (i6∂ + m)abD(x− y) |x0 > y0.

Now, we see that when y0 > x0, the propagator will involve the sum over spins of the v spinors
which will give a −(i 6 ∂ + m). This minus is cancelled by the minus in the definition of the
two-point correlator.

∴ SF (x− y)ab = (i6∂ + m)abD(y − x) |y0 > x0.

‘óπερ ’έδει δε�ιξαι

b) We are to show that the Dirac propagator is a Green’s function. Let us write the propagator as

SF (x− y)ab = θ(x0 − y0)〈0|ψa(x)ψ̄b(y)|0〉 − θ(y0 − x0)〈0|ψ̄b(y)ψa(x)|0〉.
When we act on this with (i 6 ∂ − m), it is clear that much of the mess that follows can be

greatly simplified by simple considerations. First, note that by the chain rule we will have to
have terms where the partial acts on the Heaviside function multiplied by the correlator together
with terms where the Heaviside function is multiplied by the partial acting on the correlator.
The −m term will come through the Heaviside functions and the net effect will be to have terms
similar to (i6∂−m)〈0|ψa(x)ψ̄b(y)|0〉 which will be identically zero by Dirac’s equations. The only
terms left will be the partial derivatives acting on the Heaviside functions. This can be further
simplified because ∂θ(x0 − y0) = −∂θ(y0 − x0). Therefore the entire operation reduces to

(i6∂ −m)SF (x− y)ab = iγ0δ(x0 − y0)〈0|{ψa(x), ψ̄b(y)}|0〉,
= iγ0δ(x0 − y0)〈0|{ψa(x), ψ†b(y)γ0}|0〉,
= i(γ0)2δ(x0 − y0){ψa(x), ψ†b(y)}〈0|0〉,
= iδ(x0 − y0)d(3)(~x− ~y)δab,

∴ (i6∂ −m)SF (x− y)ab = iδ(4)(x− y)δab.
‘óπερ ’έδει δε�ιξαι
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c) We are to solve the equation for the Green’s function equation by introducing the Fourier trans-
form

SC(x− y)ab =
∫

C

d4p

(2π)4
S̃C(p)abe

−ip(x−y),

and express our answer in terms of the scalar propagator

DC(x− y) =
∫

C

d4p

(2π)4
i

p2 −m2
e−ip(x−y).

This can be done in a rather straight-forward way. We will write the Green’s function equation
of part (b) in terms of the prescribed substitution for SC(x− y)ab.

(6p−m)
∫

C

d4p

(2π)4
S̃C(p)abe

−ip(x−y) = iδ(4)(x− y).

We can of course bring (6 p − m) inside the integral and it is clear that the only way for this
identity to be true is if

(6p−m)S̃C(p)ab = i.

If this is the case than the exponential will reduce to a simple Dirac delta functional multiplied
by i which is precisely what we want. So

S̃C(p) =
i

(6p−m)
,

=
i

(6p−m)
(6p + m)
(6p + m)

,

=
i(6p + m)
p2 −m2

,

∴ SC(x− y)ab =
∫

C

d4p

(2π)4
i(6p + m)
p2 −m2

e−ip(x−y) = (6p + m)DC(x− y).

‘óπερ ’έδει δε�ιξαι

d) We are to use the identity

DF (x− y) = θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y − x),

together with the relation derived in part (c) to reproduce the results of part (a).
Let us first write out our explicit formulation of the Dirac propagator.

SF (x− y) = (i6∂ + m)
(
θ(x0 − y0)D(x− y) + θ(y0 − x0)D(y − x)

)
.

Like before, we will use argumentation to reduce the problem rather than writing out explicit
terms. When we act with the partial derivative operator on the Heaviside functions, we get a
relative minus sign between the two terms and they will exactly cancel. They did not cancel in
part (b) because there was already an inherent minus sign between the two terms. Now, because
they begin additive, they will cancel. The net effect will be to bring our entire operator (i6∂ +m)
inside the Heaviside functions completely. This will result in

SF (x− y) = θ(x0 − y0)(i6∂ + m)D(x− y) + θ(y0 − x0)(i6∂ + m)D(y − x).

If you look at the two derived terms in part (a) they are identical to the equation above.
Therefore, we nearly trivially reproduce the results of part (a).
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Mott’s Formula (II)
In homework 9, we derived Mott’s formula (the relativistic Rutherford formula). We are now to derive

it by considering the spin-averaged amplitude squared of the scattering of an electron with a muon in
the limit that the mass of the muon is much larger than the energy of the electron.

a) We are to compute the spin-averaged amplitude squared for e−µ− scattering for general me and
mµ.

Let us compute this directly.

iM =�p k

p′ k′

e−

e−

µ−

µ−

= ie2

q2 ū(p′)γµu(p)ū(k′)γµu(k).

We can compute the spin-averaged square of the amplitude directly. This becomes

|M|2 =
e4

4q4
Tr [(6p′ + me)γµ(6p + me)γν ] Tr [(6k′ + mµ)γµ(6k + mµ)γν ] ,

=
4e4

q4

[
p
′µpν + p

′νpµ + gµν(m2
e − p · p′)

]
× [

k′µkν + k′νkµ + gµν(m2
µ − k · k′)] ,

∴ |M|2 =
8e4

q4

[
(p · k′) + (p′ · k)(p · k)(p′ · k′)−m2

µ(p · p′)−m2
e(k · k′) + 2m2

µm2
e

]
.

b) Taking the limit where mµ is large, we can consider the case that the center of mass frame of
the collision is the muon’s rest frame. Therefore, we have that k ≈ k′ = (mµ,~0). E represents
the energy of the electron. In this case, we can drastically simplify our kinematics.

p · k = Emµ k · k′ = m2
µ p · p′ = E2 − ~p~p′ = E2 − ~p 2 cos θ.

We can use this to directly write our spin-averaged squared amplitude

|M|2 =
8e4

q4

[
2E2m2

µ −m2
µ(E2 − ~p 2 cos θ) + m2

em
2
µ

]
,

= m2
µ

16e4

q4

(
E2 − ~p 2 sin2 θ/2

)
,

∴ |M|2 =
m2

µe4

β2~p 2 sin4 θ/2

(
1− β2 sin2 θ/2

)
.

‘óπερ ’έδει δε�ιξαι

In the last step we reduced the formula to one which will greatly help us in part (c) below.

c) We are to derive Mott’s formula by taking the limit where mµ is very large in the center of mass
frame. As we stated before, this approximation is identical to assuming that the center of mass
frame is actually the rest frame of the muon so our amplitude calculated in part (b) is correct
to the second order. We know that the final velocity of the muon is zero and that the center of
mass energy is approximately mµ (to the first order) in this frame so we may write,

dσ

dΩ

∣∣∣∣
cm

=
1

4EaEb|va − vb|
|~p|

(2π)24Ecm
|M|2,

=
1

4Emµβ

|~p|
(2π)24mµ

m2
µe4

β2~p 2 sin4 θ/2

(
1− β2 sin2 θ/2

)
,

=
e4

16π24β2~p 2 sin4 θ/2

(
1− β2 sin2 θ/2

)
,

∴ dσ

dΩ

∣∣∣∣
cm

=
α2

4β2~p 2 sin4 θ/2

(
1− β2 sin2 θ/2

)
.

‘óπερ ’έδει δε�ιξαι
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1. a) We are to verify that in the Schödinger picture we may write the total momentum operator,

P = −
∫

d3x π(x)∇φ(x),

in terms of ladder operators as

P =
∫

d3p

(2π)3
p a†pap.

Recall that in the Schrödinger picture, we have the following expansions for the fields φ and
π in terms of the bosonic ladder operators

φ(x) =
∫

d3p

(2π)3
1√
2Ep

eipx
(
ap + a†−p

)
; (1.1)

π(x) =
∫

d3p

(2π)3
(−i)

√
Ep

2
eipx

(
ap − a†−p

)
. (1.2)

To begin our derivation, let us compute ~∇φ(x).

∇φ(x) = ∇
∫

d3p

(2π)3
1√
2Ep

(
apeipx + a†pe−ipx

)
,

=
∫

d3p

(2π)3
1√
2Ep

(
ipapeipx − ipa†pe−ipx

)
,

=
∫

d3p

(2π)3
1√
2Ep

ipeipx
(
ap − a†−p

)
.

Using this and (1.2) we may write the expression for P directly.

P = −
∫

d3x π(x)∇φ(x),

= −
∫

d3x
d3kd3p

(2π)6
1
2

√
Ek

Ep
pei(p+k)x

(
ak − a†−k

)(
ap − a†−p

)
,

=
∫

d3kd3p

(2π)6
−1
2

√
Ek

Ep
p(2π)3δ(3)(p + k)

(
ak − a†−k

)(
ap − a†−p

)
,

=
∫

d3p

(2π)3
1
2
p

(
a†p − a−p

) (
ap − a†−p

)
.

Using symmetry we may show that a−pa†−p = apa†p. With this, our total momentum becomes,

P =
∫

d3p

(2π)3
1
2
p

(
a†pap + apa†p

)
.

By adding and then subtracting a†pap inside the parenthesis, one sees that

P =
∫

d3p

(2π)3
1
2
p

(
2a†pap + [ap, a†p]

)
,

=
∫

d3p

(2π)3
p

(
a†pap + ½ [ap, a†p]

)
.

Unfortunately, we have precisely the same problem that we had with the Hamiltonian: there
is an infinite ‘baseline’ momentum. Of course, our ‘justification’ here will be identical to the one
offered in that case and so

∴ P =
∫

d3p

(2π)3
p a†pap. (1.3)

‘óπερ ’έδει δε�ιξαι
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b) We are to verify that the Dirac charge operator,

Q =
∫

d3x ψ†(x)ψ(x),

may be written in terms of ladder operators as

Q =
∫

d3p

(2π)3
∑

s

(
as†
p as

p − bs†
p bs

p

)
.

Recall that we can expand our Dirac ψ’s in terms of fermionic ladder operators.

ψa(x) =
∫

d3p

(2π)3
1√
2Ep

eipx
∑

s

(
as
pus

a(p) + bs†
−pvs

a(−p)
)
; (1.4)

ψb(x)† =
∫

d3p

(2π)3
1√
2Ep

e−ipx
∑

r

(
ar†
p ur†

b (p) + br
−pvr†

b (−p)
)
. (1.5)

Therefore, we can compute Q by writing out its terms explicitly.

Q =
∫

d3x ψ†(x)ψ(x),

=
∫

d3x
d3kd3p

(2π)6
1

2
√

EkEp

ei(p−k)x
∑
r,s

[(
ar†
k ur†

b (k) + br
−kvr†

b (−k)
)(

as
pus

a(p) + bs†
−pvs

a(−p)
)]

,

=
∫

d3kd3p

(2π)6
1

2
√

EkEp

(2π)3δ(3)(p− k)
∑
r,s

[(
ar†
k ur†

b (k) + br
−kvr†

b (−k)
) (

as
pus

a(p) + bs†
−pvs

a(−p)
)]

,

=
∫

d3p

(2π)3
1

2Ep

∑
r,s

[(
ar†
p ur†

b (p) + br
−pvr†

b (−p)
)(

as
pus

a(p) + bs†
−pvs

a(−p)
)]

,

=
∫

d3p

(2π)3
1

2Ep

∑
r,s

(
ar†
p as

pur†
b (p)us

a(p) + ar†
p bs†

−pur†
b (p)vs

a(−p)

+br
−pas

pvr†
b (−p)us

a(p) + br
−pbs†

−pvr†
b (−p)vs

a(−p)
)

,

=
∫

d3p

(2π)3
1

2Ep

∑
r,s

(
ar†
p as

pur†
b (p)us

a(p) + br
−pbs†

−pvr†
b (−p)vs

a(−p)
)
,

=
∫

d3p

(2π)3
1

2Ep
2Epδrs

∑
r,s

(
ar†
p as

p + br
−pbs†

−p

)
,

=
∫

d3p

(2π)3
∑

s

(
as†
p as

p + bs
−pbs†

−p

)
,

We note that by symmetry bs
−pbs†

−p = bs
pbs†

p . By using its anticommutation relation to rewrite
bs
pbs†

p and then dropping the infinite ‘baseline’ energy as we did in part (a), we see that

∴ Q =
∫

d3p

(2π)3
∑

s

(
as†
p as

p − bs†
p bs

p

)
. (1.6)

‘óπερ ’έδει δε�ιξαι
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2. a) We are to show that the matrices

(J µν)αβ = i
(
δµ

αδν
β − δµ

βδν
α

)
,

generate the Lorentz algebra,

[J µν ,J ρσ] = i (gνρJ µσ − gµρJ νσ − gνσJ µρ + gµσJ νρ) .

We are reminded that matrix multiplication is given by (AB)αγ = AαβBβ
γ . Recall that in

homework 5.1, we showed that

(J µν)α
β = i

(
gµαδν

β − gναδµ
β

)
.

Let us proceed directly to demonstrate the Lorentz algebra.

[J µν ,J ρσ] = −
(
δµ

αδν
β − δµ

βδν
α

) (
gρβδσ

γ − gσβδρ
γ

)
+

(
δρ

αδσ
β − δρ

βδσ
α

) (
gµβδν

γ − gνβδµ
γ

)
,

= − δµ
αδν

βgρβδσ
γ︸ ︷︷ ︸

1

+ δµ
αδν

βgσβδρ
γ︸ ︷︷ ︸

2

+ δµ
βδν

αgρβδσ
γ︸ ︷︷ ︸

3

− δµ
βδν

αgσβδρ
γ︸ ︷︷ ︸

4

+ δρ
αδσ

βgµβδν
γ︸ ︷︷ ︸

5

− δρ
αδσ

βgνβδµ
γ︸ ︷︷ ︸

6

− δρ
βδσ

αgµβδν
γ︸ ︷︷ ︸

7

+ δρ
βδσ

αgνβδµ
γ︸ ︷︷ ︸

8

,

= −(δµ
αδν

βgρβδσ
γ − δρ

βδσ
αgνβδµ

γ︸ ︷︷ ︸
1&8

)gνρ + (δµ
αδν

βgσβδρ
γ − δρ

αδσ
βgνβδµ

γ︸ ︷︷ ︸
2&6

)gνσ

+ (δµ
βδν

αgρβδσ
γ − δρ

βδσ
αgµβδν

γ︸ ︷︷ ︸
3&7

)gµρ − (δµ
βδν

αgσβδρ
γ − δρ

αδσ
βgµβδν

γ︸ ︷︷ ︸
4&5

)gµσ,

∴ [J µν ,J ρσ] = i (gνρJ µσ − gµρJ νσ − gνσJ µρ + gµσJ νρ) . (2.1)
‘óπερ ’έδει δε�ιξαι

b) Like part (a) above, we are to show that the matrices

Sµν =
i

4
[γµ, γν ],

generate the Lorentz algebra,

[Sµν , Sρσ] = i (gνρSµσ − gµρSνσ − gνσSµρ + gµσSνρ) .

As Pascal wrote, ‘I apologize for the length of this [proof], for I did not have time to make it
short.’ Before we proceed directly, let’s outline the derivation so that the algebra is clear. First,
we will fully expand the commutator of Sµν with Sρσ. We will have 8 terms. For each of those
terms, we will use the anticommutation identity γµγν = 2gµν − γνγµ to rewrite the middle of
each term. By repeated use of the anticommutation relations, it can be shown that

γµγργνγσ = γσγνγργµ + 2(gνσγµγρ − gρσγµγν + gµσγργν − gρνγσγµ + gµνγσγρ − gµργσγν), (2.2)

This will be used to cancel many terms and multiply the whole expression by 2 before we contract
back to terms involving Sµν ’s. Let us begin.

[Sµν , Sρσ] = − 1
16

([γµγν − γνγµ, γργσ − γσγρ]) ,

= − 1
16

([γµγν , γργσ]− [γµγν , γσγρ]− [γνγµ, γργσ] + [γνγµ, γσγρ]) ,

= − 1
16

(γµγνγργσ − γργσγµγν − γµγνγσγρ + γσγργµγν

−γνγµγργσ + γργσγνγµ + γνγµγσγρ − γσγργνγµ) ,

= − 1
16

(
2gνργµγσ − γµγργνγσ − 2gνργσγµ + γσγνγργµ

− 2gσµγργν + γργµγσγν + 2gσµγνγρ − γνγσγµγρ

− 2gνσγµγρ + γµγσγνγρ + 2gνσγργµ − γργνγσγµ

+ 2gµργσγν − γσγµγργν − 2gµργνγσ + γνγργµγσ
)
.
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Now, the rest of the derivation is a consequence of (2.2). Because each γµγνγργσ term is
equal to its complete antisymmetrization γσγργνγµ together with six gνσ-like terms, all terms
not involving the metric tensor will cancel each other. When we add all of the contributions
from all of the cancellings, sixteen of the added twenty-four terms will cancel each other and
the eight remaining will have the effect of multiplying each of the gνσ-like terms by two. So
after this is done in a couple of pages of algebra that I am not courageous enough to type, the
commutator is reduced to

[Sµν , Sρσ] =
1
4

(−gνρ(γµγσ − γσγµ)− gµσ(γνγρ − γργν) + gνσ(γµγρ − γργµ) + gµρ(γνγσ − γσγν)) .

∴ [Sµν , Sρσ] = i (gνρSµσ − gµρSνσ − gνσSµρ + gµσSνρ) . (2.3)
‘óπερ ’έδει δε�ιξαι

c) We are to show the explicit formulations of the Lorentz boost matrices Λ(η) along the x3 direction
in both vector and spinor representations. These are generically given by

Λ(ω) = e−
i
2 ωµνJµν

,

where Jµν are the representation matrices of the algebra and ωµν parameterize the transforma-
tion group element.

In the vector representation, this matrix is,

Λ(η) =




cosh(η) 0 0 sinh(η)
0 1 0 0
0 0 1 0

sinh(η) 0 0 cosh(η)


 . (2.4)

In the spinor representation, this matrix is

Λ(η) =




cosh(η/2)− sinh(η/2) 0 0 0
0 cosh(η/2) + sinh(η/2) 0 0
0 0 cosh(η/2) + sinh(η/2) 0
0 0 0 cosh(η/2)− sinh(η/2)




So,

Λ(η) =




e−η/2 0 0 0
0 eη/2 0 0
0 0 eη/2 0
0 0 0 e−η/2


 . (2.5)

d) No components of the Dirac spinor are invariant under a nontrivial boost.

e) Like part (c) above, we are to explicitly write out the rotation matrices Λ(θ) corresponding to a
rotation about the x3 axis.

In the vector representation, this matrix is given by

Λ(θ) =




1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1


 . (2.6)

In the spinor representation, this matrix is given by

Λ(θ) =




e−iθ/2 0 0 0
0 eiθ/2 0 0
0 0 e−iθ/2 0
0 0 0 eiθ/2


 . (2.7)

f) The vectors are symmetric under 2π rotations and so are unchanged under a ‘complete’ rotation.
Spinors, however, are symmetric under 4π rotations are therefore only ‘half-way back’ under a
2π rotation.
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3. a) Let us define the chiral transformation to be given by ψ → eiαγ5
ψ. How does the conjugate

spinor ψ̄ transform?
We may begin to compute this transformation directly.

ψ̄ → ψ̄′ = ψ′†γ0,

= (eiαγ5
ψ)†γ0,

= ψ†e−iαγ5
γ0.

When we expand e−iαγ5
in its Taylor series, we see that because γ0 anticommutes with each of

the γ5 terms, we may bring the γ0 to the left of the exponential with the cost of a change in the
sign of the exponent. Therefore

ψ̄ → ψ̄eiαγ5
. (3.1)

b) We are to show the transformation properties of the vector V µ = ψ̄γµψ.
We can compute this transformation directly. Note that γ5 anticommutes with all γµ.

V µ = ψ̄γµψ → ψ̄eiαγ5
γµeiαγ5

ψ,

= ψ̄γµe−iαγ5
eiαγ5

ψ,

= ψ̄γµψ = V µ.

Therefore,
V µ → V µ. (3.2)

c) We must show that the Dirac Lagrangian L = ψ̄(iγµ∂µ −m)ψ is invariant under chiral trans-
formations in the the massless case but is not so when m 6= 0.

Note that because the vectors are invariant, ∂µ → ∂µ. Therefore, we may directly compute
the transformation in each case. Let us say that m = 0.

L = ψ̄iγµ∂µψ → L′ = ψ̄ieiαγ5
γµeiαγ5

∂µ,

= ψ̄iγµe−iαγ5
eiαγ5

∂µψ,

= ψ̄iγµ∂µψ = L.

Therefore the Lagrangian is invariant if m = 0. On the other hand, if m 6= 0,

L = ψ̄iγµ∂µψ − ψ̄mψ → L′ = ψ̄iγµ∂µψ − ψ̄eiαγ5
meiαγ5

ψ,

= ψ̄iγµ∂µψ − ψ̄me2iαγ5
ψ 6= L.

It is clear that the Lagrangian is not invariant under the chiral transformation generally.

d) The most general Noether current is

jµ =
∂L

∂(∂µφ)
δφ(x)−

(
∂L

∂(∂µφ)
∂νφ(x)− Lδµ

ν

)
δxν ,

where δφ is the total variation of the field and δxν is the coordinate variation. In the chiral
transformation, δxν = 0 and φ is the Dirac spinor field. So the Noether current in our case is
given by,

jµ
5 =

∂L
∂(∂µψ)

δψ +
∂L

∂(∂µψ̄)
δψ̄.

Now, first we note that
∂L

∂(∂µψ)
= ψ̄iγµ and

∂L
∂(∂µψ̄)

= 0.

To compute the conserved current, we must find δψ. We know ψ → ψ′ = eiαγ5 ∼ (1 + iαγ5)ψ,
so δψ ∼ iγ5ψ. Therefore, our conserved current is

jµ
5 = −ψ̄γµγ5ψ. (3.3)

Note that Peskin and Schroeder write the conserved current as jµ
5 = ψ̄γµγ5ψ. This is essen-

tially equivalent to the current above and is likewise conserved.
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e) We are to compute the divergence of the Noether current generally (i.e. when there is a possibly
non-zero mass). We note that the Dirac equation implies that γµ∂µψ = −imψ and ∂µψ̄γµ =
imψ̄. Therefore, we may compute the divergence directly.

∂µjµ
5 = −(∂µψ̄)γµγ5ψ − ψ̄γµγ5∂µψ,

= −(∂µψ̄)γµγ5ψ + ψ̄γ5γµ∂µψ,

= −imψ̄γ5ψ − imψ̄γ5ψ,

∴ ∂µjµ
5 = −i2mψ̄γ5ψ. (3.4)

Again, this is consistent with the sign convention we derived for jµ
5 but differs from Peskin and

Schroeder.

4. a) We are to find unitary operators C and P and an anti-unitary operator T that give the standard
transformations of the complex Klein-Gordon field.

Recall that the complex Klein-Gordon field may be written

φ(x) =
∫

d3p

(2π)3
1√
2Ep

(
ape−ipx + b†peipx

)
;

φ∗(x)−
∫

d3p

(2π)3
1√
2Ep

(
a†peipx + bpe−ipx

)
.

We will proceed by ansatz and propose each operator’s transformation on the ladder operators
and then verify the transformation properties of the field itself.

Parity
We must to define an operator P such that Pφ(t,x)P† = φ(t,−x). Let the parity transfor-

mations of the ladder operators to be given by

PapP† = ηaa−p and PbpP† = ηbb−p.

We claim that the desired transformation will occur (with a condition on η). Clearly, these
transformations imply that

Pφ(t,x)P† =
∫

d3p

(2π)3
1√
2Ep

(
ηaa−pe−ipx + η∗b b†−peipx

)
∼ φ(t,−x).

If we want Pφ(t,x)P† = φ(t,−x) up to a phase ηa, then it is clear that ηa must equal η∗b in
general. More so, however, if we want true equality we demand that ηa = η∗b = 1.

Charge Conjugation
We must to define an operator C such that Cφ(t,x)C† = φ∗(t,x). Let the charge conjugation

transformations of the ladder operators be given by

CapC† = bp and CbpC† = ap.

These transformations clearly show that

Cφ(t,x)C† =
∫

d3p

(2π)3
1√
2Ep

(
bpe−ipx + a†peipx

)
= φ∗(t,x).

Time Reversal
We must to define an operator T such that T φ(t,x)T † = φ(−t,x). Let the anti-unitary time

reversal transformations of the ladder operators be given by

T apT † = a−p and T bpT † = b−p.

Note that when we act with T on the field φ, because it is anti-unitary, we must take the complex
conjugate of each of the exponential terms as we ‘bring T in.’ This yields the transformation,

T φ(t,x)T † =
∫

d3p

(2π)3
1√
2Ep

(
a−peipx + b†−pe−ipx

)
= φ(−t,x).
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b) We are to check the transformation properties of the current

Jµ = i[φ∗(∂µφ)− (∂µφ∗)φ],

under C, P, and T . Let us do each in turn.

Parity
Note that under parity, ∂µ → ∂µ.

PJµP† = Pi[φ∗(∂µφ)− (∂µφ∗)φ]P†,
= i[Pφ∗P†P∂µφP† − P∂µφ∗P†PφP†],
= i[φ∗(t,−x)(∂µφ(t,−x))− (∂µφ∗(t,−x))φ(t,−x)],

∴ PJµP† = Jµ. (4.1)

Charge Conjugation

CJµC† = Ci[φ∗(∂µφ)− (∂µφ∗)φ]C†,
= i[Cφ∗C†C∂µφC† − C∂µφ∗C†CφC†],
= i[φ(∂µφ∗)− (∂µφ)φ∗],

∴ CJµC† = −Jµ. (4.2)
Time Reversal

Note that under time reversal, ∂µ → −∂µ and that T is anti-unitary.

T JµT † = T i[φ∗(∂µφ)− (∂µφ∗)φ]T †,
= −i[T φ∗T †T ∂µφT † − T ∂µφ∗T †T φT †],
= −i[−T φ∗T †(∂µT φT †) + (∂µT φ∗T †)T φT †],
= i[φ∗(−t,x)(∂µφ(−t,x))− (∂µφ∗(−t,x))φ(−t,x)],

∴ T JµT † = Jµ. (4.3)
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1. The Decay of a Scalar Particle
From the Lagrangian given by,

H =
1
2
(∂µΦ)2 − 1

2
M2Φ2 +

1
2
(∂µφ)2 − 1

2
m2φ2 − µΦφ2,

we are to determine the lifetime of a Φ particle to decay into two φ’s to the lowest order in µ assuming
that M > 2m.

We first notice that the interaction Hamiltonian is
∫

d3xµΦφφ. From this, we can directly calculate
the amplitude associated with our desired diagram:

iM =�p k2

k1

Φ

φ

φ

= −2iµ,

The factor of 2 comes from Bose statistics associated with the two identical final φ particles. So,

|M|2 = 4µ2.

We have shown before that we can directly compute the decay width of a particle from the amplitude
by using the relation,

Γ =
1

2M

∫
dΩ

16π2

|~k|
Ecm

|M|2.

In the center of mass frame, the rest frame of the Φ, Ecm = M , p = (M,~0), k1 = (M/2,~k), and

k2 = (M/2,−~k). From simple kinematics it is clear that |~k| =
(

M2

4 −m2
)1/2

= M
2

(
1− 4 m2

M2

)1/2

. This
leads to

Γ =
4µ2M2

64π2M2

(
1− 4

m2

M2

)1/2 ∫
dΩ.

When we integrate over the solid angle Ω, we should only cover 2π because the φ’s are identical. After
integrating and simplifying terms we find that

Γ =
µ2

8πM

(
1− 4

m2

M2

)1/2

. (1.1)

∴ τ =
8πM

µ2

(
1− 4

m2

M2

)−1/2

. (1.2)

‘óπερ ’έδει δε�ιξαι

2. Massless Fermion Scattering in Yukawa Theory

a) We are to write the complete amplitude for scattering two massless fermions in Yukawa theory.
From previous homework and class notes this is,

iM =�p p′
k k′

+�p p′
k′kk

= (−ig2)

(
ū(k)u(p)

1
(k − p)2 −m2

φ

ū(k′)u(p′)− ū(k)u(p′)
1

(p− k′)2 −m2
φ

ū(k′)u(p)

)
. (2.1)
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b) We are to compute the spin-averaged square of this amplitude explicitly. We will make explicit
use of our trace identities and will simplify in terms of the standard Mandelstam variables s, t
and u.

Let us begin our derivation by noting that the Mandelstam variables (in the massless limit)
are given by

s = (p + p′)2 = (k + k′)2 = 2p · p′ = 2k · k′;
t = (k − p)2 = (k′ − p′)2 = −2p · k = −2p′ · k′;
u = (k′ − p)2 = (k − p′)2 = −2p · k′ = −2p′ · k;

We can now directly compute the spin averaged squared amplitude. When using the standard
trace technology, we will simplify our terms by noticing that mf = 0.

|M|2 =
g4

4

∑

spin

{
1

(t−m2
φ)2

ū(k)u(p)ū(p)u(k)ū(k′)u(p′)ū(p′)u(k′)

+
1

(u−m2
φ)2

ū(k)u(p′)ū(p′)u(k)ū(k′)u(p)ū(p)u(k′)

− 2
(t−m2

φ)(u−m2
φ)

ū(k)u(p′)ū(k′)u(p)ū(p′)u(k′)ū(p)u(k)

}
,

=
g4

4

{
1

(t−m2
φ)2

Tr [ 6p6k] Tr [ 6p′6k′] +
1

(u−m2
φ)2

Tr [ 6p6k′] Tr [ 6p′6k]− 2
(t−m2

φ)(u−m2
φ)

Tr [ 6k6p′6k′6p]

}
,

=
g4

4

{
16(p · k)(p · k)

(t−m2
φ)2

+
16(p · k′)(p′ · k)

(u−m2
φ)2

− 8
(t−m2

φ)(u−m2
φ)

(
(k · p)(k′ · p′) + (p′ · k)(p · k′) − (p · p′)(k · k′)

)}
,

=
g4

4

{
4t2

(t−m2
φ)2

+
4u2

(u−m2
φ)2

− 8
(t−m2

φ)(u−m2
φ)

(
t2

4
+

u2

4
− s2

4

)}
,

= g4

{
t2

(t−m2
φ)2

+
u2

(u−m2
φ)2

− t2 + u2 − s2

2(t−m2
φ)(u−m2

φ)

}
.

We can simplify this equation by recalling that, in general,
∑

i mi = s + t + u. In the massless
case this reduces to s + t + u = 0 and so s2 = −(t + u)2. We may therefore conclude that

∴ |M|2 = g4

{
t2

(t−m2
φ)2

+
u2

(u−m2
φ)2

+
tu

(t−m2
φ)(u−m2

φ)

}
. (2.2)

‘óπερ ’έδει δε�ιξαι

c) Let us reduce equation (2.2) to the case where mφ = 0. By sight, this becomes

|M|2 = g4(1 + 1 + 1) = 3g4. (2.3)

It is worth noting that this agrees with our homework result.

d) Let us now compute the total cross section for this event. We have previously demonstrated
that in the center of mass frame the differential cross section is given by

dσ

dΩ

∣∣∣∣
cm

=
|M|2

64π2E2
cm

.

To determine the total cross section, we must integrate over half the solid angle giving us a
factor of 2π.

∴ σ =
3g4

32πE2
cm

. (2.4)
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3. The Ward Identity for Compton Scattering
We are to explicitly verify the Ward identity, kνMν = 0, for the case of Compton scattering. This is

equivalent to a demonstration that when εν(k) = kν ,

iM = −ie2ε∗µ(k′)εν(k)ū(p′)
[
γµ6kγν + 2γµpν

2p · k − 2γνpµ − γν 6k′γµ

2p · k′
]

u(p) = 0.

This demonstration will be much clearer if we rewrite the second term in the amplitude in terms
of (6 p′−6 k) instead of (6 p−6 k′). This is reasonable because by momentum conservation p − k′ = p′ − k.
To rewrite the amplitude, however, it is important to notice that the contraction that was used for
simplification, (6 p + m)γµu(p) = 2pµu(p) cannot be used when we use (6 p′−6 k + m). We can, however,
contract to the left using ū(p′). Doing so will yield

iM = −ie2ε∗µ(k′)εν(k)ū(p′)
[
γµ6kγν + 2γµpν

2p · k − 2p′νγµ − γν 6kγµ

2p′ · k
]

u(p).

Let us derive this amplitude for the case of εν(k) = kν by brute force.

iM = −ie2ε∗µ(k′)εν(k)ū(p′)
[
γµ6kγν + 2γµpν

2p · k − 2p′νγµ − γν 6kγµ

2p′ · k
]

u(p),

= −ie2ε∗µ(k′)ū(p′)
[
kν

γµ6kγν + 2γµpν

2p · k − kν
2p′νγµ − γν 6kγµ

2p′ · k
]

u(p),

= −ie2ε∗µ(k′)ū(p′)
[
kνγµ6kγν + 2p · kγµ

2p · k − 2p′ · kγµ − kνγν 6kγµ

2p′ · k
]

u(p),

= −ie2ε∗µ(k′)ū(p′)
[
kνγµkργ

ργν + 2p · kγµ

2p · k − 2p′ · kγµ−6k6kγµ

2p′ · k
]

u(p),

= −ie2ε∗µ(k′)ū(p′)
[
26kkµ − 2kµ6k + 2k2γµ−6k2γµ + 2p · kγµ

2p · k − 2p′ · kγµ−6k2γµ

2p′ · k
]

u(p),

= −ie2ε∗µ(k′)ū(p′)
[
2p · kγµ

2p · k − 2p′ · kγµ

2p′ · k
]

u(p),

= −ie2ε∗µ(k′)ū(p′) [γµ − γµ] u(p) = 0.

∴ kνMν(k) = 0. (3.1)

4. Compton Scattering in Scalar Quantum Electrodynamics
We are to consider the physics governed by the Lagrangian

L = −1
4
FµνFµν + Dµφ†Dµφ−m2φ†φ− λ

4
(φ†φ)2.

As usual, Fµν = ∂µAν − ∂νAµ and Dµφ ≡ ∂µφ + ieAµφ.

a) The Lagrangian is clearly invariant under the transformation φ → e−ieαφ because it contains
only squared terms and we can assume for now that α is a constant. So L → L′ = L. Let us
compute the conserved Noether current.

First, let us rewrite the global phase transition to the first order to determine the variation
on each of the complex fields.

φ → φ′ = e−ieαφ ≈ (1− ieα)φ ⇒ ∆φ = −ieφ;

φ† → φ′† = eieαφ† ≈ (1 + ieα)φ† ⇒ ∆φ† = ieφ†.

We can use this to calculate the conserved Noether current associated with this symmetry.
From our earlier work in class and homework, we know that,

jµ =
∂L

∂(∂µφ)
∆φ +

∂L
∂(∂µφ†)

∆φ†,

=
(
(∂µφ† − ieAµφ†)(−ieφ) + (∂µφ + ieAµφ)(ieφ†)

)
,

=
(
(−ieφ)Dµφ† + (ieφ†)Dµφ

)
,

∴ jµ = ie
(
φ†Dµφ− φDµφ†

)
. (4.1)

‘óπερ ’έδει δε�ιξαι



PHYSICS 513: QUANTUM FIELD THEORY FINAL EXAMINATION 5

b) Even more interesting than global phase invariance, however, is that the Lagrangian is in fact
locally gauge invariant. A transformation of the form φ → e−ieα(x)φ will leave the Lagrangian
unchanged. The field strength tensor is invariant to this gauge as we know from electrodynamics.
Let us consider how the covariant derivative and the vector potential must transform to preserve
invariance with respect to this gauge.

By direct calculation, we see that

Dµφ → Dα
µ = e−ieα(x)Dµφ− ie∂µα(x)e−ieα(x)φ.

We can transform the vector potential by Aµ → Aα
µ = Aµ + ∂µα(x), and leave Fµν invariant

because we only add a total derivative. By adding this term, however, Dµ will become invariant
under the local phase transformation. For precisely this utility, Aµ is defined to transform in
just the right way to maintain Dµ’s covariance. So,

Aµ → Aα
µ = Aµ + ∂µα(x).

c) We are to draw the Feynman diagrams for γφ− → γφ− in scalar quantum electrodynamics to
the order e2. Using our given vertex terms and propagator terms derived earlier, we may directly
write the diagram. They are all additive by Bose statistics.

iM =�k p

p′

k′ +�k p

p′

k′
+�k p

k′

p′

d) The amplitude for this interaction is,

iM =
{

ε′∗µ (k′)2ie2gµνεν(k) + ε′∗µ (k′)(−ie(p + p′ + k)µ)
i

(p + k)2 −m2
(−ie(p + p′ + k′)ν)εν(k)

+ε′∗µ (k′)(−ie(p + p′ − k)µ)
i

(p− k′)2 −m2
(−i(p + p′ − k′)ν)εν(k)

}
,

= −ie2ε′∗µ (k′)εν(k)
{
−2gµν +

(p + p′ + k′)ν(p + p′ + k)µ

2p · k − (p + p′ − k′)ν(p + p′ − k)µ

2p′ · k
}

,

= −ie2ε′∗µ (k′)εν(k)
{
−2gµν +

(2p + k)ν(2p′ + k′)µ

2p · k − (2p′ − k)ν(2p− k′)µ

2p′ · k
}

.

‘óπερ ’έδει δε�ιξαι

e) As in question (3) above, we must explicitly demonstrate the result of the Ward identity. This
can be accomplished by setting εν(k) = kν in the equation for the amplitude and see that
M→ 0.

To demonstrate this case, it will be helpful to recall that a photon is represented by a null
vector, kνkν = 0, and that momentum is conserved, p+ k− p′− k′ = 0. Let us derive the result.

iM = −ie2ε′∗µ (k′)kν

{
−2gµν +

(2p + k)ν(2p′ + k′)µ

2p · k − (2p′ − k)ν(2p− k′)µ

2p′ · k
}

,

= −ie2ε′∗µ (k′)
{
−2kµ +

kν(2p + k)ν(2p′ + k′)µ

2p · k − kν(2p′ − k)ν(2p− k′)µ

2p′ · k
}

,

= −ie2ε′∗µ (k′)
{
−2kµ +

(2p · k)(2p′ + k′)µ

2p · k − (2p′ · k)(2p− k′)µ

2p′ · k
}

,

= −ie2ε′∗µ (k′) {−2kµ + (2p′ + k′)µ − (2p− k′)µ} ,

= −2ie2ε′∗µ (k′) {−pµ − kµ + p′µ + k′µ} ,

= −2ie2ε′∗µ (k′) {0} , = 0.

∴ kνMν(k) = 0. (4.2)
‘óπερ ’έδει δε�ιξαι




