Paysics 513, QUANTUM FIELD THEORY
Homework 1
Due Tuesday, 9th September 2003

JAcoB LEwIS BOURJAILY

Problem 1) The conservation of four-momentum implies that in particle one’s rest frame,

p(l) =m :E2+E3. (11)
By the invariance of p?, p3, and p3, it is clear that,

pi

m% = (p2 +p3)2 )
= p5 + p3 + 2paps,
=m2% + m3 + 2E,E3 — phps.

But in particle one’s rest frame, po = —p3 and by (1.1), E5 = m; — E3. Therefore,

m%:m§+m§+2m1EQ—2(E§—ﬁg),

2 2
=m3z — my + 2mq By,

mi  m3—m3

By = 1.2
T g 2m (1.2)
Problem 2)
(a) laboratory frame center of mass frame
5 P
m, Pras m, 0, o 7 m; 0’ P N
m, 2
m, 0, my
23 ,
P4

(b) In the center of mass frame of reference, the total 4-momentum can be described by,
Pem = pll +pl2 = (El + E2;6) = (Ecm;ﬁ)-
Note that pips is an invariant scalar product. Evaluated in the laboratory frame,
pip2 = Epmo — 0 = Epmo.

This allows us to conclude that,

pgm = Egm = p/12 +p/22 + 2271]32»

o B2, =mi 4+ m3 + 2Ems. (2.1)
(¢) Consider the four-vectors n and A defined by,
1= (p1+p2) = (EL + ma;pL) 0 = (E{ + E3;0) = (Eem; 0);
A= (p1—p2) = (EL —m2;pL) N = (B] — By 2p).

By the frame-invariance of the scalar product,

nh=1'X = B} —mj — |pL|* = Een(E} — E3). (2.2)
1
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12 )\12

Now consider the identity n = 1?2, Calculating these products and using the result

above,

n?N? = E2, (B} — Ey)* —4|p11%) = (BL +m2)® — |pLl?) (BL —m2)® — |pL]?) = n°A\%,

(d)

(e)

- 2 -
B2 (B — By)? = dpy PEZ, = (Bf —m3 — [prl?)” — 4m3|pi |,
= Egm(Ei - Eé)2 - 4mg|ﬁL|27

21> |2 =
i = R g - el (2.3
By the conservation of four-momentum, ¢ = p; — p3 = pg — p2. So,
¢* = (pa —p2)* = 2m3 — 2papy,
= 2mi —2FE3my,
q% = —2my(Ey — my). (2.4)

The first part of this problem, namely that s = (p; + p2)? = E?,,, was demonstrated and
used in part (b) above. Let us now consider t = ¢2,

t=q® =p3 4+ p:—2pip3 = 2m3 — 2B B4 + 2|p1 '||ps /| cos(0').
Here, we wrote p1p2 explicitly in the center of mass frame. Because it is an invariant, any
frame will do. Now we can use the fact that m; = mgz and ms = my to see that |p}| = |p}]

and that Ef = E% by using part (c) from above. We will now use the notation of the
assignment where |p| = p’. This quickly reduces the above equality to

q> =2 (mi — E? +p"cos(9")) .
This can be simplified in two ways. First, notice that m? — E72 = —p'? because E}2 —p? =

m?. Second we will use the trigonometric identity 1 — cos(a) = 2sin*(a/2). Introducing
these simplifications we obtain

q? = —4p”sin® (0')2). (2.5)

To explore new areas of physics at very high energies, one requires the greatest center
of mass energy possible. This is because the center of mass energy is what is available to
create new matter in a collision. It is simple to show that fixed-target experiments have
significantly lower energy than comparable colliders. This is seen by solving the expression
for s in part (e) above. In a fixed target collision, we can compute (p; +p2)? in the laboratory
frame because it is an invariant. In the laboratory frame, py = (Ep;pr) and py = (m2,6).
Therefore in a fixed target experiment,

E2, =p}+p3+2p1p2 = m? +m3 + 2maEp. (2.6)

Approximating this in the case of a high energy collision where Eg >> m1,mo,

Eop =~ \/2maFp. (2.7)

This does not look very cost effective. If you increased the beam energy 100 times,
there would only be 10 times more energy available for particle creation. In the center of
mass collision, however, we see that there is much higher efficiency. In such a collision,
p1 = (Ep;p) and py = (Ep; —p). Taking the same approximation that the beam energy is
significantly higher than the rest-masses of the particles involved,

Eem ~ 2Ep. (2.8)

It is clear that this would be the preferred experiment. A 100 fold increase in beam
energy would result in 100 times more energy available: the way one would expect it to be.
Despite the energy efficiency of center of mass colliders, many experiments still use fixed
target experiments. Why? There are several primary reasons. The first is that it is extraor-
dinarily difficult and usually very expensive to build a collider. If the collider is to work
with matter and antimatter like Fermilab today, LEP I or LEP II, one can use the same
(vertical) magnetic fields to accelerate the particles and antiparticles in opposite directions.
This saves money on magnets but requires solving enormous engineering obstacles. In the
LEP accelerator at CERN, for example, both the e~ and e™ beams were in the same vac-
uum chamber; they had to be prevented from interacting except in very explicit locations
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along the accelerator. Imagine ultra-relativistic beams of positrons and electrons moving
oppositely in a small vacuum tube only separated by a centimeter. It clearly takes a great
deal of forethought.

In addition to engineering hurdles, there are also very large costs involved in building
these accelerators. If the collider is built to accelerate only matter, then the same magnetic
field cannot be used to accelerate opposing beams. This means that literally two entire
magnetic tracks must be built (essentially two entirely separate accelerators). This is what
is being done for the Large Hadron Collider at CERN.

Problem 3) We would like to consider the Lagrangian density,
B

1 2 b o a4 4
E—i(azﬂb) —a¢—§¢ —QQS—IQS?
under the transformation ¢ — ¢’ = ¢ + ¢. By direct calculation,

1 9 be ac® B
L= 5(0:9) —c(a—i— 5T 6 T

ac® B3
—¢<a+bc+2+6>

_¢2<b+ac+502>

We are to show that a constant ¢ can be chosen to remove the linear term in the Lagrangian.
Notice that the constant term in the Lagrangian is fine—we can always shift the Lagrangian
density by a constant without changing the equations of motion. Therefore, we must show that
we can find a ¢ such that,

2 3
<a+bc+ac+ﬁc) =0; (3.1)
2 6

Although it would be a terrible headache to solve the above cubic equation in complete gen-
erality (short of citing Cardan’s solution), we will simply note that every third order polynomial
has one real root. Analytically, one sees that for ¢ — —o0, the expression in parenthesis will
eventually be negative and for ¢ — oo, the expression will eventually be positive. Therefore,
thre must be some ¢ such that the above expression vanishes.

After a bit of algebra, one sees that one can shift £ to the form,

_1 s M 5 g Ay
E—g(aﬁt‘?) _7¢ _géﬁ _IQS’ (3.2)
where,
A =B
g = (a— pe);

2
m? = (b—ac+ﬂ2c>;

—4a £ 21/402 — 9p3b
C = .
33
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Paysics 513, QUANTUM FIELD THEORY
Homework 2
Due Tuesday, 16th September 2003

JAcoB LEwIS BOURJAILY

Studying classical field theory, we derived the Euler-Lagrange equations of motion,

o _, o
99 " 0(0u0)

It is trivial to show that a field which is described by the Lagrangian given has the following
equation of motion:

=0.

ov
—m2¢p — 9 0,0"¢ =0,
ov
= (0,0" +m?) ¢ = ~36 (1.1)
Which is precisely the Klein-Gordon equation for a field in a potential V.
The canonical momentum is,
oL
T = = Oy0. 1.2
(000) 09 (1.2)
Using 7, we write the Hamiltonian for the field.
H= /d%H = /d3x (0o — L),
- /d?’m (7% = 1/2(009)* + 1/2(V¢)* + 1/2m>¢* + V(9)),
1
=5 /d3x (7% + (V§)* + m?¢* + 2V (9)). (1.3)

With a complex scalar field, the Lagrangian becomes
L=0,0"0"p—m*¢*¢ — V(¢ ).

Following the same procedure as in part (a) above, we use the Euler-Lagrange equation to
show that

oV ov
2k Y YV o
aVv ov
L 2 L e e S
= (0,0" +m?) ¢*¢ qs% 9 (1.4)
It is relatively easy to show that canonical momenta of the field are
oL
" o)
oL
= ———— = 0po.
™= By ¢

Using this expression for 7, we will proceed as above to compute the Hamiltonian.
H = /d%H = /d% (mOop — L),

= /d% (7' —1/2n* 7 +1/2V ¢ Vo + 1/2m*¢* ¢ + V(¢ ¢)),

%/dga: (77 + V¢* Vo + m*¢*p + 2V (¢*¢)). (1.5)
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Let us derive the Noether current generated by a global phase rotation ¢ — ¢’ = e'®¢. It
is clear that £’ = £ because only modulus terms of ¢ appear in £. We rewrite the global
phase rotation to the first order as
d— ¢ =e P~ (1+ia)p = A =id;

P* — ¢ =" & (1 —ia)d* = Ag* = —ig™. (1.6)
We showed in class that the conserved Noether current associated with a symmetry is
specified by

oL oL

= Ap+ S AT,
9(0,9) 9(9u9*)
= (igd"o" —ig"0"9),
— i (§0")" — ¢"0"0). (1.7)
The Lagrangian for a source-free electromagnetic field is specified by
1
L= _EFWFW where F.=0,A, —0,A,. (2.1)
It is clear that F),, is antisymmetric, F},, = —F,,. From our knowledge of the metric
tensor in Minkowski space, it is also clear that F},,, = —F*"¥ if either u or v is zero and

F,, = F*¥ if both p and v are nonzero. Because the field strength tensor is antisymmetric,
our calculation will be much easier.

1
L= —5 (F01F01 + F02F02 + F03F03 + F12F12 + F13F13 + F23F23) s

= % (F§, + Fip + Fis — Fiy — Fis — F33)

- %[(80/11 91 Ag)? + (BoAs — By Ag)? + (Do As — Dy Ag)?
— (01 Ay — Dy A1)? — (01 A3 — D3A1)% — (0243 — 0345)?],

= % (E* - B?).

Now, let us try to find the Euler-Lagrange equations for motion for this field. Note that
from our work above if it clear that,
oL
=0.
0A,
After a short while of staring at the above equations, you should see that
oc { (OuAy, —0,A,) if p=0o0rv=0,

0(0,AL) — (0,4, —0,A,) if p,v #0,
= _FW = FVh,
So the equations of motion are simply
OuF"" = 0. (2.2)
Knowing that £ = —F% and ¢7¥B*¥ = F7  we can rewrite (2.2) as
O F =9, F" =0= -0, E' — 9, E? — 0:E° = 0,
. V-E=0. (2.3)

The other equations also can be reduced to familiarity. Specifically,
O FH = 8, F** =0,
- aoFkO = (3'1sz = eijk&;Bj,

These two equations represent half of Maxwell’s equations for a source-free field. The other
two equations relate the vector potential A, with the E and B fields. These two other
equations were ‘given.” We needed to know that B =V x A and E = —JyA — V Aq to write
down the components of E and B in terms of F),, .
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b) We construct the energy-momentum tensor, T#", (using the equation derived in my unpub-

lished QFT notes),

oL
T = ———0,A) — L, 2.5
Y00, AN) (25)

It should be clear that by simply applying our results of part (a)
TH = FMQY Ay — LOH,.

This is not symmetric in g and v. Remember that the important aspect of T#" is that it is
conserved, i.e. 0,T" = 0. To make T*” easier to work with, consider changing it to

THe = TH 4 9 KM,
Where K is antisymmetric in its first two indices. By this antisymmetry, it is clear that
8MT‘“’ =0,T" + 3#8)\K’\”” =0.

So T is a conserved quantity for any K ¥ that is antisymmetric in its first two indices.
Let KM = FHAAY which is certainly antisymmetric in A and p because of F#*. This
allows us to rewrite 7% in a much simpler form. (Note the use of the Euler-Lagrange
equations to simplify line 2 below).

THY = TH 4 9y FM AV,
= TH + A”(O\F') + FIN (0, AY),
=T 4+ F*\(9,AY),
= FMQV Ay + FFO\AY — Lo,
= FM(OY Ay — OzAY) — L"),

It should be clear that T+ = T"*. Now we are ready to derive the Hamiltonian and total
momentum from 7T#¥. First, the Hamiltonian is

H=E=T",
= FE(9;A° -9 A;) — L,
: 1
=E? - E9°A; - 5(E2 - B?),

%(EQ + B?).
(2.6)

Note that in the last line of the derivation we had to set E*9%4,; = 0. The total momentum
of the field is

gk — 0k _ _Ei(aiAk _ akAi)7
= F;(0°A*F — 9k AY),
— E;é7* By,
.S=ExB. (2.7)
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The inner product, (f,g), will be defined

(f.g) =i / @ (2)Bog () — g(2)B0 )" (x),

We show that (f,g) is independent of time. This is demonstrated by direct computation.
(9) =1 [ a0 (1" @)hg(a) - g(@)0u" (),

=i [ @2 [00f" @ugla) + 1" (2)8Bg(o) — 9()2BS" () ~ 00f" (2)oug ()],
—i [ @2 [1(@)8g@) - g(a)0B " ()]

Using the Klein-Gordon equation, this reduces to

0u(f.9) =1 [ daf (V2 = mg — (V2 ~ )"
= i/d3xf*v2g —gV ™.
We use Green’s Theorem to reduce the equation above to
0(f.9) =i [ (F'Vg=gVf )i da =0, (3.1)

The integral vanishes because we may assume that the fields go to zero at infinity.

Recall that the inverse Fourier transform of a Fourier transform of a function is the function

itself. £) = / P [em / (;i’)“ge—i’”f(k)]

Note that when we will express ¢(x) in terms of ladder operators below, ¢ will be a function
of the 4-vectors k and z. There is a minus sign to keep track of that is different from the
book’s 3-vector representation.

dgk a —ikx T ik
¢() :/7(2@3 Tm (ake g —|—akek )

We are now ready to derive the required identity. It will proceed by direct calculation.

ak = (ful@), d(z)) = i / (106 — 001"),

S dd ikx dBk 1 —iE 7ikm+ B t ikx
=1 X |e (27T>372Ek 1oare (3 kake

: &Pk iE : :
k k —ik T ik
—e' m/ (27)3 2B, (ake T tae’ "’/’)} ;
< Pk 1 : , . .
_ 3 k —ik T ik —ik T ik
= /d zethe U P2 (ake ke —afe™ + are”™ +aj el “E)}

= /d3xe“’m/ (;l:;g e~ *ay = ay,
coap = (fr(x), p(x)) = ak. (3.2)

omep €deL Setlan
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c) Let us derive the the commutation relation [ap,a;] = (27)36@®)(p — p’). To find this

commutation relation, we will first consider the fields in terms of ladder operators.

d3 1 .
6(x) = / P (ap +al )P,

3./ s .,
w(y) = / (ZWPP (=i)y/ - (apr — al )e™™ .

Note that because the p’s are dummy variables, we cannot assume they are the same when
we “mix” the integration, so we have called one p’.

(y)] =i (x—y)
Bpd3p  [wy —i i i !
(gﬂ)g v wp -5 (apap/ - apaT_p, + aT_pap/ — aT_paT_p/ — Qprap — ap/at_p + aT_p,ap + aT_p/aT_p> e (Px+p"y)
p

d3pd3p’ Wp’ 1 t T T T i(p~x+p"y) i ik b
@2m)° | wp 2 (apafp, ~Opp T apaop — afpap/) ¢ (cancelling like terms by symmetry)
d3 d3 / T . - , |
(5 )f \/K; ([ap,aT_p,} + [ap/,a[p]) HPctPy) (note that |:a’p’aT—p/:| - {&p/,aT_pD
T Wp

d3 d3 / ; ) ,
e | o [ ol | @ Y) =150 ). (33)
P

Note that by the properties of the Dirac ¢ functional,

d?’pd?’p’, i(oac . )
/ @) iet@x+p"y) _ ;5(3) (x—y).

[6(x);

3

[\]

Il
— — — —

Applying this knowledge to (3.3) from above, [ap, aT_p,} must satisfy
d?’pd?’p/ Wpr ;
: , =1
/ (2,”)3 wp [G’P a—p]
This is identically satisfied if and only if we have that
[ap, aT_p,} — 2m)3®) (p + p).
You can check this statement by noticing that this implies
d3 dS / ;
/ pd’p" [wp [amaT_ } - ¥ _q
(2m)? | wp P Wp

Therefore, noting our use of —p, we may conclude that

[ap,afy | = (27)*69(p — ') (3.4)

omep €del Setlan
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Paysics 513, QUANTUM FIELD THEORY
Homework 3
Due Tuesday, 23rd September 2003
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a) We are given complex scalar Lagrangian,

L=0,06"0"d—m>¢*¢.

It is clear that the canonical momenta of the field are

oL .
" B~
. oc

T e

The canonical commutation relations are then

[B(x), 00" (y)] = [¢" (2), D08 (y)] = 18P (x — y),

with all other combinations commuting. As in Homework 2, the Hamiltonian can be directly
computed,

H = /d3xH=/d3a?(7Tao¢—£),
= /d?’x (7r*7r —1/2n*m 4+ 1/2V¢*V + 1/2m2¢*¢),
1
~ 3 /d3x (77 4+ V¢* Vo + m?¢*9).

We can use this expression for the Hamiltonian to find the Heisenberg equation of motion.
We have

auota) = o). [ @y (5" (n(o) + V6" ) Vo) + 0" (o).
—5 [ Evléte).m @ )

—5 [ 90—y )

LI

2
Analogously, i0p¢™(x) = %7‘(‘(.’1’:) Notice that this derivation used the fact that ¢ commutes
with everything in H except for 7. Before we compute the commutator of 7*(x) with the
Hamiltonian, we should re-write H as PS did so that our conclusion will be more lucid. We
have from above that

1
H= 3 /d% (77 4+ V¢* Vo + m?¢*9).
We can evaluate the middle term in H using Green’s Theorem (essentially integration by
parts). We will assume that the surface term vanishes at infinity because the fields must.
This allows us to write the Hamiltonian as,

H= %/d% (m*m 4+ ¢* (= V? + m?)9).
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Commuting this with 7*(x), we conclude that

1

o (@) = 5 [yl (@), 6 ()~ + m?)oly),

_% /d3y (=V2 +m?)¢(y)6® (x —y),

= —56().
Combining the two results, it is clear that
Fd(a) = (V)? —m?)e(z),
= (0,0" + m?)¢ = 0.
This is just the Klein-Gordon equation. The result is the same for the complex conjugate
b) f];fja.use the field is no longer purely real, we cannot assume that the coefficient of e in

the ladder-operator Fourier expansion is the adjoint of the coefficient of e~"P*. Therefore
we will use the operator b. The expansion of the fields are then
d? 1 , ,
et = / (27:))3 oo, (ape_w”“ + bf)ew“x“);
p
d3 1 I -
#) = / (2733 2w (aLequ + bge " )
q
It is easy to show that these allow us to define m and 7* in terms of a and b operators as
well. These become,

N * N d3q . W iq,xt —iq xt
m(xh) = Opep™ (xM) = / (27r)3“ / 701 (aLe W — pge™tnT );
. dBp | |w P P
T (z") = ogp(z") = / (27T)3Z 719 (*ape Prt 4 bI)€ Pu )

These allow us to directly demonstrate that

Bodda —i e P
[¢(x#)77r(y#)] :/ (2];)6‘171 %2 ([apaajl] e_z(pi“f quc ) _ [b;,bq] e (P;r qus )>’

while noting that

[ap, al] = [bp,b]] = (21)*6® (p - q),
and all other terms commute. This implies that there are in fact two entirely different sets

of particles with the same mass: those created by bf and those created by af.
c) I computed the conserved Noether charge in Homework 2 as

j* =i(¢0"¢" — 970" 9).

We integrate this over all space to see the conserved current in the 0 component. When
expressing phi and pi in terms of ladder operators, we can evaluate this directly.

5 [ 6 @ @) - w@)o).

i [ dPad®pd® - - - -
- % / 42%1)’6 q (%afq i (O =Pu) _ g bo e~ (i) y pF of i (Putan) _ pfp civ (qu—m) —ce.

i [ dPpdiq £ 53— o) — abog® b ot 5@ Cbs® ()
~2) (@3 apay6'” (p — q) — apbqd™”’ (p + q) + bpayd™ (p+ q) — bybgd™ (p — q) ) — c.c.,

d’p i gl i
K (apap —apb_p +bpal , — bpbp) —c.c.,

[ dPp
= 2/ e (a;r)ap — b;bp).

—~

omep €del Setban
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The calculation on the previous page clearly shows that particles that were created by bf
contribute oppositely to those created by a' to the total charge. We concluded in Homework
2 that this charge was electric charge.

We are asked to compute the general, K-type Bessel function solution of the Wightman
propagator,
Bp 1
D =0 0)|0) = —
() = Olo)o)0) = [ 5855

Because z is a space-like vector, there exists a reference frame such that £° = 0. This implies
that 22 = —x2. And this implies that pz = —p - x = —|p||z| cos(#) = —|p|v/—z2 cos(#). We
can then write Dy (z) in polar coordinates as

1 2m T . o) 1
Dw(l') _ / d¢/ ez\p\\/—x cos(0) / dep ’
(2m)3 Jo 0 0 21/p% + m?
1 T : 7 cos °° 1
— do ez|p|\/—x cos(0) / 2d ’
(277)2/0 0oV p2\/p2+m2
1 /1 oz [ 1
= dg e'lPIV = / pdp ———,
(2m)? )y 0 2y/p? +m?
(where £ = cos(0))
1 / <, 1 1 ipIV=a" _ —ilplv=a?
=-— [ pidp : (e b —e ' )
472 /o 24/p? + m2 ilp|v/—a?
_ L psin(plV=a?)
an2/—z2 /p2 + m?2 '

Gradsteyn and Ryzhik’s equation (3.754.2) states that for a K Bessel function,

N — Ko(a).

—ipx

i cos(azx)

o _cosaz)

By differentiating both sides with respect to a, it is shown that

= —BK;(aB) = BK:(af).

°°  asin(ax)

o sin(or)

We can use this identity to write a more concise equation for Dy (x). We may conclude

Dy (z) =

2K1(m —.TZ).

_m
472/ —x

We may compute directly,
iD(z) = (0l[¢(x), p(0)]]0),
= (0l¢(x), ¢(0)|0) — {0|¢(0), ¢(x)|0),
= Dw(z) — Dw (—x),
= D(z) = i(Dw(—z) — Dw(x)).
Similarly,
Dy (z) = (0{¢(x), ¢(0)}/0) = Dw (z) + Dw (—x).

It is clear that both function ‘die off’ very rapidly at large distances. I was not able to

conclude that they were truly vanishing, but they are certainly nearly-so at even moderately
small distances.
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Paysics 513, QUANTUM FIELD THEORY
Homework 4
Due Tuesday, 30th September 2003
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1. We have defined the coherent state by the relation

3 al
[{mi}) = A exp { | jﬁ} 0).

For my own personal convenience throughout this solution, I will let

A= d3k nkaz .
(27)3 \/2E},
a) Lemma: [ap,e“ﬂ = \/%QA_
proof: First we note that from simple Taylor expansion (which is justified here),
Az A3
eAzl—l-A—i—?-i-?—i—...

Clearly a, commutes with 1 so we may write,
1 1
[aiﬁ? BA] = [ap“A} + §[GP7'A2] + Q[GPMA?)] +o

= lap, Al + 5 (fag ALA+ Alay, AD) + 51 (s AL + Alay, LA+ Alay, ALA) + ..

. A A3 AY
:[ap,A] <1+A+2+3'+4'+>7

= [ap, Ale™.
Note that the step labelled “*’ is unjustified. To allow the use of “*’ we must show that
[ap, A] is an invariant scalar and therefore commutes with all the A’s. This is shown by
direct calculation.

d3k‘ Nk
(27)3 \2E},

d3]€ Nk
(27)3 /2
"lp
ViE,

This proves what was required for ‘*.” —2— is clearly a scalar because n and F, are real
2F P
P

numbers only. But by demonstrating the value of [a,, A] we can complete the proof of the
required lemma. Clearly,

[ap,eA] = [ap, Ale? = Z[)E e,

p

[aln A] =

[ap, al],

7

(2m)*6@ (5 - k),

Il
— —

g

omep €del Setlan
It is clear from the definition of the commutator that apeA = [ap, eA] + eAap. Therefore it
is intuitively obvious, and also proven that

apl{m}) = Naye|0),
= /\/’([ap,eA] + eAap) |0},
= Nn7p|0> + Neta,|0),

V2E,

raplmed) = | {}). (L)

omep €del Setban
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b) We are to compute the normalization constant A/ so that ({ng}/{n}) = 1. T will proceed
by direct calculation.

L= ({m}{m}),

= N0l T VIR | (i ),

i adk__ng
= N*{0le” &% V2= [{ny.})
because we know that ay|{nx}) = \/EHWD So clearly

I a3k
1= |j\/’|2e @m)3 2By

2
1 I a3k Mk
2 (2m)3 2Ey, .

S N=e
c) We will find the expectation value of the field ¢(x) by direct calculation as before.

9@ = ({mHo@)H{m}) = mm/ﬁ,éE%wuwMMWx

({neHape™me}) + {mlabe™ P {me}) |

act with a, to the right act with a;(, to the left

:/ (F )

—/ dp o cos(p
(2m)3 E,

d) We will compute the expected particle number directly.

= OtV = e [ el

3p
/gﬁ(wa@%mm)
_ / dp
(2m)3 2B,
e) To compute the mean square dispersion, let us recall the theorem of elementary probability
theory that

(AN)?) =N2 - N".
We have already calculated N so it is trivial to note that
2 _ / Bkd®p men;,
(2m)S 4ELE,

Let us then calculate N2,
= (V) = (e [ s Lalanaa i)
_ / Ekd’p iy

(2m)6 2./E) E,

3 1.3 -
/iﬁygﬁﬁz«%m@@@+wmwwmwﬁ

_/ Bk n? +/d3kd3p Ul
) (2m)32E, (27)8 4ELE,
It is therefore quite easy to see that

(any) =¥ -7 - |

{ﬁk}\aka;r)\{ﬁk}>,

a3k L,%
(271’)3 2Ek '
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2. We are given the Lorentz commutation relations,
[JH | JP7] = i(g"P M7 — ghP JVT — P JHP 4 gho TV,
a) Given the generators of rotations and boosts defined by,

Li _ EGijk:ij KZ _ JOi
9 ;

we are to explicitly calculate all the commutation relations. We are given trivially that
[Li, L] = ik L,
Let us begin with the K’s. By direct calculation,
[KZ’KJ} [JO’L JO]] _ Z( OZJO] OOJij o gijJOO +g()j[]i0)7

= —iJ,

= 27 LF.
Likewise, we can directly compute the commutator between the L and K’s. This also will
follow by direct calculation.

[L’L’K]] _ §€lk[Jllk’JOj]7

—_ §€zlki(glOJ2J _ gzOJlg _gljJZO _|_g7.leO)7
_ ’LG”kJOk
=ik Kk,

We were also to show that the operators

) 1 . ) ) 1 . )
J_ﬁ_:i(LW—iKl) Jl_zi(Ll—iKl),
could be seen to satisfy the commutation relations of angular momentum. First let us
compute,
1 . _
[‘]+7 ‘]—} 1 [(Lz + ZKl) (L] - ZKZ)] ;
1 o
=7 ([Ll LI +i[K* L] —i[L', K9] + [KZ,KJ]) ,
=0.

In the last line it was clear that I used the commutator [L?, K7] derived above. The next
two calculations are very similar and there is a lot of ‘justification’ algebra in each step.
There is essentially no way for me to include all of the details of every step, but each can be
verified (e.g. z[K‘ LI = —i[l7, K" = (—i)ie/* K* = —e'lk K*__etc). They are as follows:

T4 T = 5 (L4 iKY (D +iK))
7 (D) il K D) L K9] L K — (K K))
= } (Z‘eljkLk _ Giijk _ eiijk + ’L'EijkLk)
4 )
— Ze”kQ(Lk —l—ZKk) _ ’Lewkjk
Likewise,

[Ji,J7] = i (L' —iK"), (L) —iK7)],
1

([L', 7] —i[K*, L7] —i[L*, K’] +4i[L', K'] — [K', K7]),

MH%

(ZezjkLk _|_€iijk T eijk‘Kk +Z€1jkLk)7
1 ..
= Zeljk2(Lk —iK*) =ik gk,

omep €del Setban
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b) Let us consider first the (0, %) representation. For this representation we will need to satisfy
i

) 1 . ) ) 1 .
Jy= (L ik =0 U= S (L i) = T

This is obtained by taking L = %l and K' = % The transformation law then of the (0, 1)
representation is
—iwy,, JHY
(P(O,%) — € op @(0’%),
O LB K
— O LK )‘I’(o,%w

_iolel | BIKI
3

= * 0.
The calculation for the (1,0) representation is very similar. Taking L = % and K' = f%i,
we get
. 1 . , i , 1 .
er:§(Lz+iK1):% JL= (L —ik*) =o.

Then the transformation law of the representation is
—iw,, TP
(1) — e T D
_ —i(0"L'+BI K
= IR ),

_iolet  pIKI
= 2 2
¢ (1.0

Comparing these transformation laws with Peskin and Schroeder’s (3.37), we see that
YL = P10 VR =P, 1)
3. a) We are given that T, is a representation of some Lie group. This means that
[T, Ty) = if**T..

by definition. Allow me to take the complex conjugate of both sides. Note that [Ty, Tp] =
[(=T%), (=Tp)] in general and recall that f*¢ are real.

[To, Th]" = (ifabcTC)*v
[T;’ Tb*] = _ifabCTc*v
ST, (ST = if e (=T7).
So by the definition of a representation, it is clear that (—77) is also a representation of the
algebra.

b) As before, we are given that T, is a representation of some Lie group. We will take the
Hermitian adjoint of both sides.

[To, To)" = (if**°T.)T,
(T.Tp)" = (LT,)" = —if*°T],
TiTS —TIT] = —ifher,
(T, i) = —ifeeT,
[T T = i,
So by the definition of a representation, it is clear that 7./ is a representation of the algebra.

¢) We define the spinor representation of SU(2) by T, = %a so that

1/0 1 1/0 —i 11 0
h 2(1 0) & 2<i 0) T3:2(0 —1)'

We will consider the matrix S = io?. Clearly S is unitary because (ic2?)(ic?)’ = 1. Now,
one could proceed by direct calculation to demonstrate that

T * T * T *
STlS ——( 1 0 )__Tl STQS _<’L 0 )——22 SZSS —( 0 1)——13.

This clearly demonstrates that the representation —T7 is equivalent to that of T,.
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d) From our definitions of our representation of SO(3,1) using J% and J, it is clear that

(J)t=JL.

This could be expressed as if (1,0)" = (0, 3), or, rather LT = R. So what we must ask
ourselves is, does there exist a unitary matrix S such that

SLST=L  but SKSt=—-K?

If there did exist such a unitary transformation, then we could conclude that L and R
are equivalent representations. However, this is not possible in our SO(3, 1) representation
because both L and K are represented strictly by the Pauli spin matrices so that iK = L =
Z. It is therefore clear that there cannot exist a transformation that will change the sign
of K yet leave L alone. So the representations are inequivalent.

omep €deL Setban
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Paysics 513, QUANTUM FIELD THEORY
Homework 5
Due Tuesday, 7*" October 2003

JAcoB LEwIS BOURJAILY

1. We are to verify the identity
[, 8771 = (T77)" A"
It will be helpful to first have a good representation of (J*?)", . This can be obtained by raising
one of the indices of (J*7),, which is defined in Peskin and Schroeder’s equation 3.18.

(TP, = g"MT ) = ig" (8587 — 606%),
= i(g""0] — 9" 07).
We will use this expression for (777)", in the last line of our derivation below. We will proceed
by direct computation.

1
Y, 8] = 1 (V2T = " 7)),
i
=1 {17 =A% = {1 {0
1

3 (9" = ~Pg"7 — g"7 4" +~7g"?),
i(g"y7 =g "),

i(g"opy" — g7 o0y,

i(g"7oy, — g"76p) ",

S B VA

omep €deL Setfou

2. All of the required identities will be computed by directly.
a) vyt =4
1 =00+ () () + () =4
b) vyt = —2f
Yk = vk,
= (29 — WY)E"Y,
=2k " — vk,
Skt = =2k
c) VPV =4p-q
VB = Vurp” 4V,
= (2940 — 1 Y)P" o (29" — 1),
= (2pu—2Vu) (29" —g"),
=4p - q — 294 — 24 + 494,
Sl =4p-q.

d) ki = 204K
By repeated use of the identity v#~" = 2gH" — ~

v

7,
YukBIV" = 7Y kY oY G0V,
= 29, kPa09°" — 27ukppg™ d + 27,k 9" Ve — 4KV,
= 24§y — 2pfd — 2kpd.,
=44k -p — 24Pk — 4p - k.
Yk = 294 K.

omep €deL Setfou
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3. We are to prove the Gordon identity,

=Uu

(0" + p)*

ioh’q,

(»)

u(p).

u(p')y"u(p) o o

Explicitly writing out each term in the brackets and recalling the anticommutation relations of
~v*, the right hand side becomes,

o[+t e, _ /-i TN TR BTG 2, LaVaki(p _ o
u®) | =, 5 | wlp) = ul’) 9m "+ =5 (0 =) + 3 (0 =)o) | ulp),
= alp) | 0 8~ = e+ 0= ) o= 0 o)
: 1
— / - 2 U T % o y
u(p) _2m( Pt ="y (0 —1') )] u(p),
[ 1
— o /,u. ,u n
1) |5 G0 =25 =) o).
Now, recall that the Dirac equation for u(p) is
pu(p) = mu(p).
Converting this for @(p’)y, one obtains
u(p')y = mau(p').
Applying both of these equations where we left of, we see that
_ [ @ )t ot N
o) | o 1 | ) = i )
Looking again at the Dirac equation, mu(p’) = u(p’)y’ = u(p’)y"p,,, it is clear that
/ m my
IN L — (] (p' +p) 0 qu
! ut) = atp!) | PP 4 ),
omep €deL Setfou
4. a) To demonstrate that v° = iv%y'y24? anticommutes each of the y*, it will be helpful to

remember that whenever p # v, y#v¥ = —Y~#* by the anticommutation relations. There-
fore, any odd permutation in the order of some +'s will change the sign of the expression.
It should therefore be quite clear that

7°7° = i°y %930 = =iy = —ir®y 0912 = =05

Yo7t =i Pt = %% = =i = 1Y

7°7? = i°y19%9%? = —in®y1y? = —ir®y 01 = =P

Y°7? = iy VP yPyR = inyly? = *Ws’YOVI’YZVS i o
{¥°, "} =0.

‘. % ~
omep €deL det€an

b) We will ﬁrst show that 7® is hermitian. Note that the derivation relies on the fact that
(7°)T =40 and (7%)T = —~%. These facts are inherent in our chosen representation of the v
matrices.

—i(y' 2T,

SR UCHUCHI

3,210

Yt

—iv?y 09,

—iyty0y2a3,

= i7"y,

5

:"}l.

(v*)f



PHYSICS 513: QUANTUM FIELD THEORY HOMEWORK 5 3
Let us now show that (v°)% = 1.
(7°)? = —ivsr2m70i7°7 P,
= 73727177’ Y,
= 3727 7,
= 13727°7%,
= 73737
=1.

c) Note that €, is only nonzero when k # X # p # v which leaves exactly 4! = 24 nonzero
terms from the 24 possible permutations. Also note that y*y*y#~", like €xapw, 1S totally
antisymmetric—any odd permutation of indices changes the sign of the argument. Therefore,
they change sign exactly together, €, ,\Wv“'y)‘7“7” does not change sign. That is to say that
each of the 24 nonzero terms of e,i,\m,v’“”q/)‘v”v” is identical to 12377 272, So

24
6&)\;11/7’{7)\7#7” = 2460123’}/0717273 = _7757
. ’}/5:716 ,Yn,_y)\,y,u,yy
s 24 KAV .
This implies that
Y = —ieanu Y,

,Y[K,y)\,yu,yl/] _ _ienAuu,yS.

5. We will begin by simply directly computing the form of £+ from the eigenvalue equation
(P - 30) &+ (D) = £36+(D)-

Let us begin to expand the left hand side of the eigenvalue equation,

- _.)71 0 sin 6 cos ¢ +1 0 —isin fsin ¢ Jr} cos 0 0
br29)=75 sin 6 cos ¢ 0 2 \ isinfsin¢ 0 2 0 —cosf )’

(p36) = 1 ( cosf  sinfe ) .

=

2 \ sinfe® —cosh

Note that we can see here that because this matrix has determinant —1 and trace 0, the eigen-
values must be are £1. Therefore, we may write the eigenvalue equation as the system of

equations,
1 cosf  sinfe ™ €L 1/ &
a . ip 2 = :l:* 2 .
2 \ sinde —cosf & 2\ &

These two equations are equivalent; I will use the first row of equations. This becomes

+¢4 = cosfEl +sinfe €3,

Therefore,

o —ide2 D e—ide2
1 sinfe™"?y _ig 5 1 __sm&e & R 5
& = T oosg = ¢ tan(0/2)5 and &= Trosg — € tan(0/2)&%
So that

e~ cot(0/2)€2 —e ¥ tan(0/2)€2
§+:< 2(/)§+> and 5_:( 2(/)£ )
& &
To find the normalization, we must apply the normalization conditions §:L§i = 1. By direct
calculation,
ler = 1= (63)(cot®(8/2) + 1),
@y
sin?(0/2)’

€2 = ¢ sin(6/2).
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Likewise for €_,
gl =1= () (tan®(8/2) + 1),
(&)’
cos2(0/2)’
& =€ cos(0/2).
Notice that if £, satisfies £€7¢ = 1 then so does & = €™¢. So in solving the normalization
equations, we necessarily introduced an arbitrary phase n. Noting, this, spinors become

—id e i
gt [ e cos(0/2) i e "?sin(6/2)
Gr=e ( sin(0/2) and E-=e cos(0/2) ’
Lastly, we would like to set the phase n so that when the particle is moving in the +z—direction,
they reduce to the usual spin-up/spin-down forms. It should be quite obvious that n~ = 0

satisfies this condition for £_. For £T, we will set the phase to nT = ¢ so that we may lose the
e~ term when 6 = 0. So we may write our final spinors as

o= (B0, ) em ()

omep €deL Setfou
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Paysics 513, QUANTUM FIELD THEORY
Homework 6
Due Tuesday, 21" October 2003

JAcoB LEwIS BOURJAILY

1. For the following derivations it will be helpful to recall the following:

PY(t, &P = nar "o (t, —&);

Po(t, )P = i (t, )7
CyCt = —i(yy ")
CuC! = —i(+"7*)T;

T, H)TT = 7'y ¢(—t, D);

To(t, BT = —(—t, D)y'>.

a) We are to verify the transformation properties of A* = 1py*y%1) and TH = 1pot¥+) under
P.

Let us first consider the axial vector A*.
PAFPY = Pyt Py Pt = 02y vy nay e,
= p7°9#9°4%,
= =" 7"7°%,
= _"/}7;/75w = _A;r
The last step can be seen by noticing that

VOyta° = { ZMW u :‘f;g } = Yp-
Now we will consider the transformation of the tensor T#".
PTH P = Piar P = iin o 0y,
= 7 %,
= Yo = Th
Similar to the axial vector case, the last step is a result of directly verifying the identity

{J‘“’ u,u#Ooru,V:O}
=0

i
Pty = S (VY =AY =0 T e o Lory =0

2
omep €deL ettou

b) We are to verify the transformation properties of V* = ¢y*1) and A* = ¢y*~%¢ under C.
Let us first consider the transformation of the vector V¥.

CVICT = CyyCl = —i(709%) Ty (—i) (y"?)T,
= — 7 ° YTy %y,
= P72y %,
= -yt =-VH
Let us now consider the axial vector A*.
CAHCT = Cy" v uCT = —i(Y°7*0) Ty#y® (=) (v °7)T,
= 97",
e e i G A B8
= 97",
= 7"y 0%,
= PytySyp = A*.

omep €deL Setfou
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c) We are to confirm the transformation properties of P = i9)7°1 and V# = 1)yt under 7.
First let us consider the transformation of the pseudo-scalar P.
TPT' = Tipy YT = —i(=dy' 7" )7° (v'%),
= i7"y,
= i = —P.
Let us now consider the transformation of the vector V*.
TVIT! = TPy T = Py°y iy y iy,
= @V;ﬂﬂ = Vu~
omep €del Setfou
a) We are to demonstrate the transformation properties of V# and A", as previously defined,
under CP.
We have almost computed every detail necessary for our solution in question (1) above.

The only transformation that we have not yet confirmed is the transformation of the vector
V# under P. Let us compute that now.

PVHPT = Pty Pt = ipy® 0,702,
= Py0yHy 0%,
= ?!_WM/J =V,

By simply applying our transformation properties derived above in succession, we observe
that,

Vi = ,&,Yuw L 1;7”7# L’ _7Z7u¢ = _Vu

AF = iy —F s S —C Py = — A,
b) Expecting an analogy with the electromagnetic current vector, we will check the transfor-
mation properties of each.
agree? agree? agree?

g 2, g S _gu g <2 g,

ve P V., wyes VI _C . _yn yes VH _cP . ~V, yes

An P, —A, no AM — S Ar po Ar 2, —A, yes

c) We will demonstrate that the weak Lagrangian,

G
Lyeak =~ TQ(VH —A)(VH— A,

is not invariant under C or P, yet is invariant under CP.
Like before, I will directly compute all of the transformations using the table made above
in part (b) above. First note that

Lyeak o< V2 — 2V, AF + A2,

When we take each of the of transformations from above, we see that
V22V, Al 4 A2 — P V249V AP 4 A2 £ L
V2oV, Ak + A2 — S V2LV, AR + A% £ Ly
V22V, Ak + A2 P Y29y AR 4 A? = L.

S0 Lyeak is not invariant under C or P by is under CP, as we were required to demonstrate.
omep €del Setfou
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3. Let us define the product of the 3 discrete symmetry transformations as © = CP7. We must
show that under ©, the Dirac field transforms by the rule

OY(z)0" = P¢*(—x),

where

Like so many times before, we will proceed by direct calculation.
OY(z)0" = CPTY(t,Z)TTPICT,
= CP~'y3y(—t,)PICT,
= 1aCy' 77 (—2)CT,
—inay' 70 (W (=) )T,
= —inay' 7’y Y T (— ),
= —inay" v Y (),
= inay 7' VY (),
= Ny P* (—1).

omep €deL Setfou

4. For the following derivations it will be useful to recall that

Yy

0 1 i 0 O'i
1 0 ) w = 70_1' 0 )

where

a)

b)

1 _ 0 1 2 0 —i 3 _ 1 0
U‘(1O’ =\i o) 77 o 1)
We must show that any new matrices defined by
v = Uy UT,

where U is an arbitrary 4 X 4 unitary matrix, satisfy the dirac algebra. This is proven by
demonstrating that

{7V} =29"".
Knowing that the Weyl-representation v*’s satisfy the Dirac algebra, we will directly show
that,

{77} = {Unp U, Uy UTY,
= Unl, UTUAG U + Uny, UTUAG, UT,
= Ul i + i) U,
=2Ug"UT = 29",
omep €del ettou
Consider the unitary matrix which produces the Dirac representation
=5 (41)

We must show that Up is in fact unitary and we must find the matrices v* in the Dirac
representation.
The unitarity of Up is trivial

1 1 1 1 -1
U UL = = _
P ‘2(—1 1><1 1)‘1“4'

When the matrices are directly computed, we see that

o_ (1 0 i i
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¢) We must now show that in a general frame, the Dirac spinor takes the form,
([ VEime
a-p&/VE+m )

This is demonstrated by showing that it solves the Dirac equation, or, namely, that

u®(p)

Vpuu’ (p) = mu’(p).
This is simple to evaluate directly. Noting our Dirac representation of the v*’s and that
po = F, we see

Vﬂpuus(p) = < —'p_o

‘ % ~
omep €deL der€an

d) We must show that the solution found in part (¢) is normalized in the standard way.
Given that ¢ is normalized such that €67 = 1, we see that

au=u""u=( VE+m¢ E'ﬁff/\/m)((l) _01 ) ( 5.5?/%)’

(- )?
—dle((B4m) - (7)),
E?2 4+ 2mE +m? — p?

E+m
E? +2mE +m? — E? + m?
E+m
2mE + 2m?
E+m
= 2m.

)

)

)

omep €SeL Setfou
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Symmetry Factors

Throughout the following derivations it will be helpful to state explicitly a method to obtain the
symmetry factor for a given diagram. The method is derived from the published lecture notes of Professor
Colin Morningstar of Carnegie Mellon University.

The symmetry factor of a given diagram is given by

g_ n!(n)"7
T
where n is number of vertices, n is a coupling constant, and r is the multiplicity of the diagram. The
value of 7 is 4! in ¢*-theory and 3! in Yukawa theory. This pattern implies 1 will be 4 for question 1(b)
below.

To determine the multiplicity 7, all external points are labelled and all vertices are drawn with four
(or three) lines emerging. All of these lines are assumed to be distinguishable. The total number of ways
to connect the external points and vertices to form the diagram equals the multiplicity r. If a diagram
is direction sensitive, then this is taken into account by only including the number of ways to draw the
diagram given the directional conditions onf the external points.

1. a) We are to determine the symmetry factor for four diagrams.

T=4~3:12andnzlsoS:1!(142!)1 = 2.

P=8-4.3.2=192 and n =20 § = 224°* _ ¢

r=8-3-4.3.2=576 and n=2s0 5 = 2" _ o

31(41)3
r=12-3-8-3.-4-3-4-2=82944 andn=3s0o S = 82(94)4 =1.

JBeloR=

b) We are to determine the symmetry factors for the following diagrams.

&,

o r=2~2:4andnzlsoS:1!(4)1:1.

r=4.2.2.2=32andn=2s0 S = 2W* _ 1

p=4.2.2=16and n=2so0 S = 2W* _ o

b3t

LChapter 9, page 141. Available at http://www.andrew.cmu.edu/course/33-770/.
1
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2. a) We are asked to draw all distinct Feynman diagrams for the four point function of the ¢*-theory
given below to the order \2.

b) We are to calculate the contributions from each diagram. Note that I have included explicit
symmetry conservation in the above diagrams. For example, for contribution (ii), I have made
the substitutions k1 = k and ks = k — p; — po; I have made similar substitutions for the other
diagrams as well. Thus, including symmetry factors, the contributions are,

i) (—iA)(2m)*6™ (ps + pa — p1 — p2);

o (—iN)? / d*k 45(4) i i

11) 9 (27‘()4 (271') é (p3 +p4 P1 p2) (k2 — mg ¥ ’LG) ((k —p1— 2)2 m2 ¥ 26)
(_)\)2 / d4k 45(4) _ _ 1 ) .

iii) 5 o) (2m)%0' (p3 + pa — p1 — p2) 02 —m2 1 i6) ((h+ pr—pa)? —m? +ic)’

(N2 / d*k 45(4) o i i

iv) 5 2n) (2m)*6"Y (p3 + pa — p1 — p2) 02— m2 1) ((h T pr—pa)? —mZ ¥ i)

3. a) We are to draw all of the Feynman diagrams up to order A or g? for the scattering process
pA +PB — Pa + p3. These are given below.

T K

b) Like part (a) above, we are to draw all of the Feynman diagrams of order g\ for the process
pa+pB — p1 + p2 + p3. Note that the labels are implied after the first diagram on the left of
each row. There are 10, and they are given below.

< IS T K T
TR T e o Yl

c) It is clear that all of the symmetry factors are 1. I have directly computed them, but it is
unnecessary to repeat those trivial calculations here. Rather, it is enough to notice that there
are no loops in any of the diagrams. Each vertex connects unique, distinguishable fields. This
is equivalent to the observation that the topology of each diagram above was enough to specify
it entirely. Therefore, all symmetry factors are 1.
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JACOB LEWIS BOURJAILY

Problem 4.1
We are to consider the problem of the creation of Klein Gordon particles by a classical source. This
process can be described by the Hamiltonian

H=Ho+/d3x — j(@)e(),

where H, is the Klein-Gordon Hamiltonian, ¢(x) is the Klein-Gordon filed, and j(z) is a c-number scalar
function. Let us define the number A by the relation

3
s= [ i o

a) We are to show that the probability that the source creates no particles is given by

o {esp i [ate it@onta)] b1o 2

Without loss of understanding we will denote ¢ = ¢;. Almost entirely trivially, we see that

Hy = - / iz j(@)6(a).

P(0) =

Therefore,
2

)

P(0) = '<0|T {exp {—i / dt’ Hl(t’)} } 10)

=z {ew [ fate stwro) } o

b) We are to evaluate the expression for P(0) to the order j2 and show generally that P(0) =
L-XA+0(\?).
First, let us only consider the amplitude for the process. We can make the naive expansion

i {exp i [ jerote)]| }10) = 0i0) +1 [t s 0lo10) ...

For every odd power of the expansion, there will be at least one field ¢, that cannot be contracted
from normal ordering and therefore will kill the entire term. So only even terms will contribute to
the expansion. It should be clear that the amplitude will be of the form ~ 1—-0(52)+0O(j4)—.. ..
Let us look at the O(j2) term. That term is given by

2

omep €deL Setfou

(o[ {—% (fats itro)) } 0) =~ [ d'za'y j@)i)OT {66 HO)
— 5 [dsd'y j@)ity) Dr(a - ).

1 d4p ) —ip(z— . .
=—§/d4wd4y /( e P () (y),

2m)4 p%2 — m? + ie

1 d*p . . i
_ _ - d4 . —ipx d4 . ipy Y
5 /(%)4 / z j(z)e / y j(y)e PR

J (p) J *(p)
1 d*'p =, o 1
__5/(271')4”(]))' p2—m2+i6’

1 d3p dp® -, |5 i
=5 3 J (p)| 2 2 . "
2 ) (2m) (2m) p? —m? + e

1
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We know how to evaluate the integral

dp® | - 9 7 _ dp® | - 9 7
|V O e = | G O G E

= [ i i
— ) em P By 00+ By)

The function has a simple pole at p® = —FE, with the residue
ilj (p)1? _ i)l
p? — Ep P—_E, 2E,

We know from elementary complex analysis that the contour integral is 27i times the residue at
the pole. Therefore,

1 d3p dpo = 2 { 1 dsp I - 2
S| o | onli O 5—m—=—5 | 5535 W
2 ) (2m) (2m) p? —m? +ie 2 ) (2m)3 2Ep
1
= —5)\.

Because we now know the amplitude to the first order of A (or, rather, the second order of j),
we have shown, as desired, that

PO)=[1-8\+...P~1-X+0(\?).
omep é5er Setfan

We must represent the term computed in part (b) as a Feynman diagram and show that the
whole perturbation series for P(0) in terms of Feynman diagrams is precisely P(0) = e™*.

The term computed in part (b) can be represented by —— = —\. It has two points (neither
originated by the source) and a time direction specified (not to be confused with charge or

momentum). We can write the entire perturbation series as

o oo |1 fate swot)] b = |14—ms T2 s

To get the series we must figure out the correct symmetry factors. If one begins with 2n
vertices, then n of them must be chosen as ‘in’; there are 22/2 = 2" ways to do this. After that,
each one of the ‘in’ vertices must be paired with one of the ‘out’ vertices; you can do this n!
ways. So the symmetry factor for the term with n uninteracting propagators is

S(n) =2"-nl

We may now compute the probability explicitly.

—_—
—
PO)=[1l4—>—+ > 4 —>— + >+ :
_>_ +
[e%s} )" 2
- <Z (2"73! ) ’
n=0
> (=A/2)"
el
n=0
()
P(0) =¢?

omep €deL Setfou
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d) Let us now compute the probability that the source creates one particle of momentum k. First
we should perform this computation to O(j) and then to all orders using the same trick as in
part (c¢) to sum the series.

Let us calculate the amplitude that a particle is created with the explicit momentum k.

o {anex i [ate i@ot] bio

. . d3p 1 —ipx ipT
:z/d4x j(x)<0|ak/w o7, (ape P —I—a,;r)ep )|O>|0>,

:i/d4xj(:c)<0|ak/ @p 1 ale®*|0),
(2m)3 \2E, P

e (27)%®) (p — k)|0),

I
~.

I
'Q\

. d?
d*x ](Cﬂ) <O| /(277')3 /TEP
d4$ j(ﬂ]‘) eikx

(2m)* /2By
ij (k)
V2Ex

Now, the probability of creating such a particle is the modulus of the amplitude.

~ T 2
P(li) = —'JQ(E)J .

We can compute the probability that a particle is created with any momentum by simply inte-
grating over all the possible k. This yields

3 ~
PO = [ g i@ = A

Therefore in Feynman graphs, —— = iv/\. The entire perturbation in Feynman diagrams is

5

therefore
2
+
+
P(1) = X|14+—>»—+ + —— 4+ + - ,
_>_
_>_

)

= ‘ixf)\e’\/Q

:

. P(1) = Xe™
e) We are to show that the probability of producing n particles is given by a Poisson distribution.
From part (d) above, we know that each creation vertex on the Feynman diagram must be
multiplied by iv/A. Now, because each of the final products are identical and there are n! ways
of arranging them, the symmetry factor in each case is n!. The probability is approximated by
)\TL
Like we have done before, to get the correct probability, we must take into account the probability
that no particle is created. Therefore,
Ate A
f) We must show that a poisson distribution given above with parameter A has a norm of 1, an
expectation value of A\, and a variance of .
First, let us compute the norm of the distribution function.
o0 o0
A" N - A" —A A
Zﬁe =e ZH*S e’ =1.
n=0

n=0
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The expectation value for the number created is simply,

B =3 " e )\e’AZ e D DL Y

n=0 m=0

To compute the variance, we will use the relation Var(n) = E(n?) — E(n)2. Let us compute
E(n?).

n—1

> A
Z n=1) D
— (n—1)V

o0 n—l 0 )\n—l
+ — | >
LT A o
0 )\n—l
_ —A_A -
=Xe et + de ;70172)!,
Lo )\i >\n72
= A" \%e” —_—,
— (n—2)!
=N 4\

Knowing this, it is clear that
Var(n) = 2+ X -X=\

Problem 4.4

The cross section for scattering of an electron by the Coulomb field of a nucleus can be computed, to
lowest order, without quantizing the electromagnetic field. We will treat the field as a given. classical
potential A, (z). The interaction Hamiltonian is then

H; = /d3m e@v“zﬁAw

where ¢(z) is the usual quantized Dirac field.

a) We must show that the T-matrix element for an electron scatter to off a localized classical
potential is given to the lowest order by

(psliT|ps) = —iet(ps)y"u(p:) - Au(py — pi)-

where fl# is the Fourier transform of A,,.
We may compute this contribution directly.

(sIiTIp) = i [ d%alps 7 {H1(2) i),
= —ie [ Aoy L@ 0l ),
——ic [dta AP (@),
= —ie / d'z Ay (z)a (pp)y*us (py)e'™®r ),

— e (py )y () [ Au(m)enr ),

= —ien® (ps)v*u® (i) A (ps — i)

‘ % ~
omep €deL der€an
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b) If A,(x) is time independent, its Fourier transform contains a delta function of energy. We
therefore define

(s |iTIps) = iM - (27)3(E; — Ey).
Given this definition of M, we must show that the cross section for scattering off a time-
independent localized potential is given by

1 1 &Py 1 )
= — L (2m)6(Ey — E; :— g2
7T 0 2E (27)° 2Ef( m)O(Ey — Ei)lM(pi — py)l

From class we know that we can represent an incoming wave packet with momentum p; in
the z-direction and impact parameter b by the relation

d3p; b
Wb)z/ B i) () i)

(r) /2B,
The probability of interaction given an impact parameter is then
d3pf 1 2
P) = — T
( ) (271_)3 2Ef <pf|7’ |¢b>| )

d3pf 1 /d3pid3k 1
(2m)3 2Ef (2m)8 2E,,2E}
7 d3pf i /d3pid3k e*ib(pi*k?)

(2m)3 2E; (2m)6 2E,,2F;,
Therefore,
do = /d% P(b),

- dgpf i\/ ) d3pd3k e—tb(p—k)

- (2m)3 2Ey (2m)8 \/2E,2E)

&Ppy 1 [ EPpd®k () (k) 2
— b7 2m)26®) (py — k1 )0(Es — E,)6(Es — Ex)M M(k *
/(27r)6 \/m( ) (pL 1)d( f p) ( f %) (p—>pf) ( _’pf)

e~ @R (p )b (k) (g [T |ps) (s liT k)™,

P(pi)y* (k) (2m)*6(Ef — Ep,)0(Ef — Ex) M(p; — pg)M(k — py)*.

P(p)p* (k) (2m)*6(Ef — Ep)S(Ef — E)M(p — pp)M(k — pg)*,

(2m)3 2B
_dpp 11, /d%d% POI* () o)

(@m)? \/2E,2E,

(2m)3 2E5 |y (pr = k1)d(p: — k2)6(Ef — Ep)M(p — pp)M(k — pg)",

_ dpy 1 1(2)/d3p1
— (2m)3 2E7 |vj (2m)3 2E,

With a properly normalized wave function, this reduces directly to (allow me to apologize for
the inconsistency with notation. It is hard to keep track of. The incoming momentum p has
energy E;.)

[ (p)|*6(Ef — Ep)|M(p — pg)|?,

1 1 &y 1

== - _E 2
7= 0 3E, (am)? am; 2O — B M= )

omep €deL Setfou
Now, let us try to write an expression for do/df2.
dBPf 11 1
do = - —(2m)6(Er — E; 2
/g /(27T>3Ui 25, 2, OBy — E)IMT,
_ /p?dpfdﬁl 1 i
(2m)2  v; 2E42E; vy

aQ  p? 9
- [ Gep i

1
= Q 2
/d M)

do 1
dQ ~ 16m2

3(p' —p)IMI?,

Therefore, we have that

M2

‘. % —~
omep €der der€an
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¢) We will now specialize to the non-relativistic scattering of a Coulomb potential (A = Ze/4nr).
We must show that in this limit
do a?Z?
dQ  4m?vtsin?(6/2)
Let us first take the Fourier transform of the Coulomb potential.
4,09 =2 [, 7

T Ar r
B Zedr

T Ar k¥

~ Ze
L Aﬂ(k) == F

From part (a) above, we calculated that

M = —iew” (pp)y*u’ (p) Au(ps — D),
—i€2Z ’ 0
= ——5u’ (pr)y u’(p).
(s —p? 7 )
In the nonrelativistic limit, £ >> p so we may approximate that
@ (pr)7u' (p) = w* T (py)u (p) = 2E5°.
Therefore, our amplitude becomes
—ie2Z ,
M= L g
(pr —p)
From part (b), we may compute do/d) directly.
do  47°¢'E62
dQ 1672 (py — p)*’
Z2 a2 E2
- p(1 — cos)?’
Z202E?
 4ptsin(0/2)’
Z2a?
C 4E2vtsin?(0/2)
In the nonrelativistic limit, we have that E2 ~ m2. Therefore we may conclude as desired that
do o’ Z?
dQ  4m2vtsin(0/2)

omep €deL Setfou
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Due Tuesday, 18*® November 2003

JacoB LEWIS BOURJAILY
The Decay of Vector into Two Scalars
We are to compute the decay rate of unpolarized vector particles of mass M into two scalars of mass

m. We should calculate the decay rate in the rest frame.
Defining p* = (p — p)#, the amplitude for the decay diagram is given by

I

Vs

Pt
It is quite straightforward to calculate the spin-averaged square of the amplitude,

1 T . ~V
IMJ? =2 > euifptes(—i) 5,

spin

f2
3 <M2 _gul/> ﬁuﬁyv

_ L ()
3 M? '
Now, because we are computing this in the rest frame where k, = (M, 0) and p* = (0, —2|p]), k,p" = 0.
Similarly, we know that p? = 4|p]2. Therefore,

= iM = e,ifpt.
kM

A2

2 =
MP = =5

1/2
Note that |p] = E? — m? = (MT2 - m2) . Using this and the equation for the decay rate found in

Peskin and Schroeder,
1 Q) |p] 9
oM / 1672 M|M|

RERYRN Sl
oM | 1672 M ’

f? 3
= 24m2 )2 / AT,

72 (22 )™
67 M2 '

S =

Mott’s Formula

We are to generalize problem 2 of Homework 8 in the relativistic case. We computed then the general
amplitude to be

;2
—e*Z _
M = ——u" (ps)y"u’ (p).
(s —p? 7

To compute the spin averaged amplitude, it will be helpful to recall our earlier kinematic result that
(py —p)* =16/p* sin #/2. Let us now compute the amplitude squared in the spin-averaged case.
Z2et

MP = 5 S o () (o),

Z2%e*
~ 32lpl4sint 6/2

Tr (17 +m)y 5+ m)).
It will be helpful to break up the trace into its four additive pieces.

Tr (Y°@; + m)7 @+ m)) = Tr (V787" ¥) + Tr (1°mA°¥) + Tr (°¥s7"m) + Tr (v"my"m) .
1
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It should be clear that the two middle terms are both zero because there is an odd number of 4’s. The
last term is nearly trivial, Tr (Wom'yom) = 4m?2. Let us now work on the first term.

Tr (Y°#7°¥) = ps.poTr (v99%9°")
= 4p;.py (66" — g%g" + g g"0) |
=4(2E° —ps,p"),
=4(2E® — E? + p}p)
=4 (E? + [p]* cosb) .

Using these results, we have that

IM|? = 8|]514Z:if;9/2 [E? + [p]* cos § + m?]
= 8|ﬁ|428211€119/2 [2E% — |p1*(1 — cosB)] ,
_ 8@1?? 7 [2E% — 2| sin®6/2] ,
- 4|ﬁ1i2;1§2/2 [1 - @)2 o) 2] |
_ zwﬂmzjsei;m [1 - Bsin?0/2] .

In the last two lines we have used the fact that p/E = 3. Now, we showed in Homework 8 that

do |MJ?
dQ 1672’

2 _

Using the fine structure constant to simplify notation, where a* = %, it is clear that

do 7202
o= =—"" 1 3%sin%0/2].
A9~ 43%|p% sin® 62 [1 = % sin"6/2]

Helicity Amplitudes in Yukawa Theory
We are to consider the amplitude given by,

= (=ig?) (80 )u(p) gz W Yulk) — Ao () s

a) We are to derive the selection rules for helicity for this theory.

We can best understand the selection rules by requiring that one of the spinors is in a projec-
tion. To bring the projection operator to the neighboring spinor (in either diagram and starting
from any outside term) requires that the projection anticommutes through a 4°. Therefore, the
interaction must flip the spins. Exempli Gratia, a#uR = uTWO#uR = ULUR.

b) Given these selection rules, what are the non-vanishing amplitudes? These are the only possi-
ble terms that involve both incoming states flipping their spin in the outgoing states. So, the

nonzero amplitudes are Mrr.rr, MeRr;LL, MLR,RL; MRL;LR, MRL;RL, MLR,LR-

c) We are to use problem 5 of Homework 5 to compute the explicit form of the two-spinors. We
should use this to find the eigenvectors uy(p) at very high energies. This is a relatively straight
forward calculation. We derived quite some time ago that in the high energy limit for general
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spinors. Using the helicity basis derived in Homework 5, we see that

0 cos /2
— JoF 0 _ e’ sin6/2
ur = V2F g sin 6,2 and ur = V2FE 0
cosf/2 0

d) Now we should rederive the selection rules from part (a). This is relatively straight forward. Let
us compute directly the ug and uy These two are simply,

g = (— 2Eei¢sin9/2,\/2Ecos9/270,0> and iy = (0,0,\/2ECOS€/2, 2Fe™ " sin9/2> .

It should be clear that in this limit, ugur = 0 because the have opposite zeros. Therefore, we
may again conclude that the only inner products that do not vanish are those which flip the spin
at the vertex. This is the same relationship seen intuitively in part (a).

e) We must now compute the nonvanishing inner produces of the eigenvectors that we mentioned
above. Let us compute each in turn directly.

ar(pur(p) = —2Ee' sin/2;

(

ar,(p )ur(p) = 2Ee™" sin 0/2;
ur(k')ur(p) = —2E€™ cos0/2;
ur (k' )ur(p) = 2Ee™" cos 0/2;
ur(p')ur (k) = 2Ee' cos6/2;
ar,(p)ur(k) = —2Ee" cos 0/2;
ar(K)ur (k) = 2Fe® sin 6 /2;

ap (K )ugr(k) = —2Fe™ % sin /2.

f) Let us compute the amplitudes Mpgr.rr and Mpg.Lgr in the limit of very high energy. We use
the limit to reduce |p|2-like terms to E2. These are directly computed to be

1 1

— 9 —2F¢"® cos6/2
AE?sin%0/2 2 0829/2( ' cosf/ ))’

Mprr = —g° ((—2Eei¢’ sinf/2)

= gQ(eid’ + 67;¢)7

Ee'?sinf/2 — 2Ee'® cos /2
e'?sinf/ e cos/_4E

o Mgrrrr = 2g%€"
By a similar calculation,

_ 2 —i¢ i
MrrLr =—g <2Ee cos /2 AR oo 9/2(72Ee cosﬁ/2)> ,
S Mrrr = —9%

g) Let us determine the spin averaged amplitude squared. The contributions are very similar to
the two above (in fact, the amplitudes are identical so we just multiply). We see
1

M2 = § (2026°)? +4g%).

. |[MJ2 = 3¢%.
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Homework 10
Due Tuesday, 25" November 2003

JAcoB LEwWIS BOURJAILY

Electron-Electron Scattering  We are to consider the elastic scattering of two electrons (M pller
scattering) in Quantum Electrodynamics.

a) We are to draw the two tree-level Feynman diagrams for the scattering amplitude. We see that
they are,

k/ p/
My = -

t-channel u-channel

Co |- 1 _ _ 1 _
= ie? uuf(k’)v“uu(k)mu»(p’)wm(p) - uu/(k’)v“m(p)mux (") Y (k)
The relative minus sign is a simple consequence of Fermi statistics.

b) Using the Gordon identity, derived in homework 5 problem 3, we are to derive a simple form of
the amplitude for the forward most direction. Here we will assume that p’ ~ p. So,

(p/ —|—p)l‘ n ia'lw(p/ _p)u] u,\(p)

ax (p )" un (p) = ax (p') [ om 2m

R R ]

‘. % ~
omep €del der€an

c) In the forward most direction, it is clear that the denominator for the t-channel contribution
is small and the denominator for the u-channel contribution is large so only the t-channel
contributions are relevant. In the t-channel amplitude, it is clear that spin cannot flip so
that spin of the initial and final particles are the same. Therefore, the important terms are
Mrr.r, MrRr.RR, MRL;RL, MLR;LR-

d) In contrast to part (c), only the u-channel contributions are important so the final spin states
may be switched. So the important amplitudes are Mrr.rr., MrRr.RR: MLR,RL, MRL:LR-

1
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e) Using parts (a) and (b), we may compute,
1

MppriLr = 62&”’ (k)V“Uu(k)m

ux (p)vuu(p),

62

= ——=——4k"'p,,
—2k2(1 — cos9) g

e2

B
—k2sin?6/2
_ e? (Ezm _|_E2>
—k2sin?60/2 \ 4 7
o ()
— (% — 2) in26 ’
am —m? ) sin” 62
2¢? (Efm — 2m2)
(FE2, —4m?)sin® /2

f) We now should compute the differential cross section with respect to the scattering angle 6.

m
Pus

do :27rd—0
dcosf sy’
_ 2m|MJ?
- 64m2E2)]

2ra’4 (Efm — 2m2)2
= 2 . )
4E2 (E2. —4m?2)”sin*0/2

cm

do 2ra’ (B2, — 2m2)2

“dcos® E2 (E2, —4m?)*sin?0/2’

‘ % —~
omep édeL der€an

A Delicate Balance Consider the reactions a+b — a’ +b" and @’ +b — a+b. These four particles
may all have different masses and different spins given by s, Sp, Sq/, Spy. We are to compute the ratio of
differential cross sections with respect to solid angle 2 for the two processes.

Because of the enormous symmetry of the two processes, it will suffice to demonstrate a calculation
of one of the processes. We will assume the process is time reversal so that the amplitude squared is the
same for both. Let us compute the differential cross section.

do p M (sum)|?
@t Y = —ib|(27r)24Ecm (2sa| ¥ (1)(25)b| 1)
_ pIM (sum)[*
6472 Eo Eyp(1)Eq + 1/ Ep) Eom (250 + 1) (255 + 1)
M (sum)[?
T 6Am2EoEy(1/Eq + 1/Ey)(Eq + By) (254 + 1)(25 + 1)
_ M (sum)|?
642 (o + Ep)2(250 + 1) (255 + 1)’
_ M (sum)|?
6472k2 (25, + 1)(2sp + 1)
Now, it is clear by symmetry that this implies
do | M (sum)|?

Y+ b) = .
0@ Y =) = e s T )@y £ 1)

S Slatboa + ) K250 + 1) (2sy +1)

Cdr(al+ U —a+b) K250 +1)(2sp+1)

omep €deL Setfou
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Fermion Annihilation in Yukawa Theory  We are to consider the process of fermion anti-fermion
annihilation into to scalars ff — ¢¢.

a,b) The two Feynman diagrams for the S-matrix in the tree approximation are,

\ / N e
T
/ ~ \
t-channel u-channel
p—¥ +m =K +m

= (—ig®) |u*(p) 50" (k) + u®(p)

o-pr-m o—rp—mz’ Y

c) The relative sign is because of Bose statistics.



Paysics 513, QUANTUM FIELD THEORY
Homework 11
Due Thursday, 4™ December 2003

JACOB LEwWIS BOURJAILY

The Dirac Propagator
a) The Dirac propagator is defined as the time-ordered two point correlator

Sela — v = O @i}y = { OOl o> 0

We are to evaluate Sg(x — y)qp for a free Dirac ﬁeld w
Let us first compute this for the case when z° > y°; the other case will follow trivially from
symmetry arguments. Dropping all obviously zero terms, we may immediately write that

p dg/ 1 ) sSTs —s' !
Sp(x — O|/ J3E,2Ey ir'y—p Z(aa ud ub(p)>|()>.

spin

Now, we know that (O\a;agﬂ()) = (27)36G) (p — p')dss SO

d3p 1 —ip(x— s =5
Se(e — y)as = / e " L w ),

d’p 1 (o)
(27)3 2E, 3, P+ e

5 Sp(@ = Y)ay = (id +m)apD(x —y) 2% >y
Now, we see that when 3° > ¥, the propagator will involve the sum over spins of the v spinors
which will give a —(i & + m). This minus is cancelled by the minus in the definition of the
two-point correlator.

S Sp(x =y a = (i@ +m)wD(y —z) |y° > 20

omep €deL Setfou

b) We are to show that the Dirac propagator is a Green’s function. Let us write the propagator as

Sr(z = y)ar = 0(” = y°) (0lva (@) ()|0) — 0(5° — 2°) (01 (y)va(2)]0).

When we act on this with (i 9 — m), it is clear that much of the mess that follows can be
greatly simplified by simple considerations. First, note that by the chain rule we will have to
have terms where the partial acts on the Heaviside function multiplied by the correlator together
with terms where the Heaviside function is multiplied by the partial acting on the correlator.
The —m term will come through the Heaviside functions and the net effect will be to have terms
similar to (i@ —m) (0|1 ()1 (y)|0) which will be identically zero by Dirac’s equations. The only
terms left will be the partial derivatives acting on the Heaviside functions. This can be further
simplified because 90(x° — y°) = —90(y° — 2°). Therefore the entire operation reduces to

(i — m)Sr(z — y)ap = i7°0(z° — 1) (0| {a (), s (y) }|0),

= i7°6(2° — y°) (0[{a (), ¥ (4)7°}0),
=i(7)%0(2° = y°){va (@), v} (1)} (0]0),
= i0(2° — y")dP (T — )0,

(i@ —m)Sp(x — y)ap = i0W (& — y)dap.
omep €EdeL Setfou
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We are to solve the equation for the Green’s function equation by introducing the Fourier trans-
form

Sc(g; — y) p = / ﬂSC(p) be_ip(x_y)
a c (27_[_)4 a ?
and express our answer in terms of the scalar propagator

d*p i .
D )= [ 22" —ipla—y)
w0 = | Tt
This can be done in a rather straight-forward way. We will write the Green’s function equation
of part (b) in terms of the prescribed substitution for S¢ (2 — ) ap-

- m)/ i Sc(p)ae™ P = i6W (2 — y).
c(2m) ‘

We can of course bring (p — m) inside the integral and it is clear that the only way for this

identity to be true is if

@5 - m)gc(p)ab = 1.
If this is the case than the exponential will reduce to a simple Dirac delta functional multiplied
by ¢ which is precisely what we want. So
~ 1
Sc(p) = 7——,
¢ —m)
i @P+m)

G—m) G+ m)’
i +m)

p2_m2’

d4p Z@—'_m) —ip(x—
.,Sc(xy)abL(Qﬂ)4Me PE=Y) — ¢+ m)De(z — ).

omep €deL Setfou

We are to use the identity
Dp(z —y) = 0(2° —y°)D(z —y) + 6(y° — 2°)D(y — 2),

together with the relation derived in part (c) to reproduce the results of part (a).
Let us first write out our explicit formulation of the Dirac propagator.

Sp(z —y) = (iP +m) (0(z° — y")D(z — y) + 0(y° — 2")D(y — 2)) .

Like before, we will use argumentation to reduce the problem rather than writing out explicit
terms. When we act with the partial derivative operator on the Heaviside functions, we get a
relative minus sign between the two terms and they will exactly cancel. They did not cancel in
part (b) because there was already an inherent minus sign between the two terms. Now, because

they begin additive, they will cancel. The net effect will be to bring our entire operator (i@ +m)
inside the Heaviside functions completely. This will result in

Sp(z —y) =0(z" —4°)(i@ + m)D(z — y) + 0(y° — 2°)(ip + m)D(y — ).

If you look at the two derived terms in part (a) they are identical to the equation above.
Therefore, we nearly trivially reproduce the results of part (a).
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Mott’s Formula (II)

In homework 9, we derived Mott’s formula (the relativistic Rutherford formula). We are now to derive
it by considering the spin-averaged amplitude squared of the scattering of an electron with a muon in
the limit that the mass of the muon is much larger than the energy of the electron.

a) We are to compute the spin-averaged amplitude squared for e~ scattering for general m, and

my,.
Let us compute this directly.
o
; P ie? — (1 —( 1./
iM= Srulp )y ulp)uk’)yuu(k).
e u

We can compute the spin-averaged square of the amplitude directly. This becomes

4
e
A = T+ )y ) T €+ e+ )

464 TN ‘v 2 / / / 2 /
s [p p’ +p"p" + guv(m; —p‘p)} X [k ky + Kk + g (m? — k- k)]
8 4
M2 = 764 (- K)+ @ -E)p- k)@ k) —mi(p-p) —mi(k-k)+2mim?] .

b) Taking the limit where m, is large, we can consider the case that the center of mass frame of
the collision is the muon’s rest frame. Therefore, we have that k ~ k' = (m,,, 6) E represents
the energy of the electron. In this case, we can drastically simplify our kinematics.

p-k=Em, k-E =m? p~p,=E2—ﬁ];/=E2—ﬁZCOSQ.

"
We can use this to directly write our spin-averaged squared amplitude
8et
IM|? = o [QEQmZ — mi(E2 —p2cosh) + mzmi] ,
16¢*
= mi f (E2 — % sin? 6/2),
q
_ m2 64
M2 = —HE (1 - 3?sin?0/2) . . }
M 3P 2sin* 0/2 ( / ) omep €der der€an

In the last step we reduced the formula to one which will greatly help us in part (c) below.

c) We are to derive Mott’s formula by taking the limit where m,, is very large in the center of mass
frame. As we stated before, this approximation is identical to assuming that the center of mass
frame is actually the rest frame of the muon so our amplitude calculated in part (b) is correct
to the second order. We know that the final velocity of the muon is zero and that the center of
mass energy is approximately m,, (to the first order) in this frame so we may write,

do| 1 171
dQ|,,, 4E.Ep|vg — vp| (27)24Eep,

o 1 |p] mie‘l 2 . 2
~ 4Em,pB (2m)24m,, 325 2sin 6/2 (1= Fsin%0/2),

e

= 1— 3%sin%60/2
167r24ﬂ2;5'2sin49/2( §sin”0/2),

o

om 4029 2sin6/2

(M2,

do

o5 (1 - B%sin?0/2).

omep €deL Setfou
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. a) We are to verify that in the Schodinger picture we may write the total momentum operator,

P= f/d% m(x)V(x),

in terms of ladder operators as
d®p
— T
P= / (27‘-)3 P apap.

Recall that in the Schrodinger picture, we have the following expansions for the fields ¢ and
7 in terms of the bosonic ladder operators

m(x) = /(g;};g (_i)\/?eipx (ap - aT_p). (1.2)

To begin our derivation, let us compute ﬁd)(x).

Vo(x) = v/d3p L (a eP* 4 al e_ipx)
(2m)3 \2E, * © P ’

d? 1 . .
= / p (ipapelpx — ipaLe*“’x),

(2m)3 /2B,
_ d3p 1 . DX +
‘/ P am, (a0 = L)

Using this and (1.2) we may write the expression for P directly.

P = —/d3x T(x)Vo(x),

dhdp 1 [Ex
- _ 3,2 MV P 2 [Pk i(ptk)x _af _t
B /d Tens 2\ B v (“k a—k) (“p a*P)’

_ /d%d?’p—l 2
) @ems 2\ Ep

-/ (553 3P (e =) (4 —aly).

Using symmetry we may show that a,paT_

p(27r)36(3) (p+k) (ak — aik) (ap — aip>,

p= apaI). With this, our total momentum becomes,

& 1
P= / (277)3 ip (a;f)ap + apal,).

By adding and then subtracting a;f,ap inside the parenthesis, one sees that

p-/ (;353 3P (abp + (ap.)

~ [ o (oo +3 apua).

Unfortunately, we have precisely the same problem that we had with the Hamiltonian: there
is an infinite ‘baseline’ momentum. Of course, our ‘justification’ here will be identical to the one
offered in that case and so

d3p
SP= / E P anap. (1.3)

omep €deL Setfou



PHYSICS 513: QUANTUM FIELD THEORY EXAMINATION 1 3

b) We are to verify that the Dirac charge operator,
Q= [ @ v @),

may be written in terms of ladder operators as
dp
_ sT s st
Q= / (27)3 Z (apTap - bp bp)'
s

Recall that we can expand our Dirac #’s in terms of fermionic ladder operators.

dsp 1 ipX s,.8 S s .
bo(x)" = / (;j’;g \/;Tpeipxg (a;jugf (p) + 0" pup (—p)). (1.5)

Therefore, we can compute () by writing out its terms explicitly.

Q= / @3z 1 (2)u(z),

dBkd 1 ((p—k)x T, T T s, 8 S s
= /d3x(27r;5%e’(p k) Z [(akfubT(k) +b7kvbT(—k)) (apua(p) —l—bjpva(—p))},

T8

- / m%@mw(p 102 [(ak 09 + 07007 (1) (apui(e) + 0 () |
= / (;?;3 2;}) Z [(agu?(p) + blpvy(—p)) (a;uj(p) + bsjpvs(—l)))]a

d 1 , T .
B / ) 35, 2 (aplagu; (p)us(p) + apb e (p) ()
T8
+b7 apvyt(—p)us (p) + 0, b°! vT’T(—p)US(—p))
—“P'P"b a —-P ' —p"b a ’
dp 1 ey . e .
- / P (ap]LapubJr (p)ua(p) + b—Pb—TvaT(ip)va(fp))v

d 1
_ s rt s r st
- / (n)? 255, 21" 2 (“P et b—Pb—P>’

d 75 s
- | B S (s )

We note that by symmetry b ;b”, = bpbi. By using its anticommutation relation to rewrite

b;bfj and then dropping the infinite ‘baseline’ energy as we did in part (a), we see that

Q= / (57?;3 > (apfay — b303). (1.6)

4 % ~
omep €deL der€an
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2. a) We are to show that the matrices
(T )ap =i (5”a5yﬁ - 5#551'@) ;
generate the Lorentz algebra,
[T, TP =i (g"P T — g TV — g" T + ' J"P).

We are reminded that matrix multiplication is given by (AB)ay = AaﬁBﬁW. Recall that in
homework 5.1, we showed that

(j,u.l/)(xﬁ — (gu(xéuﬂ _ gvadﬂﬁ) .
Let us proceed directly to demonstrate the Lorentz algebra.
T4 0] = = (a8 = 838", ) (9707, = 976%) + (874075 = 8%40% ) (6%, —g*75%,)
— 5Ma5Vﬁng5ay 4 5/10‘(;11[590/35% + 5%51/ gpﬁ(;ov _ 5%51/0[9065%

(03

1 2 3 4
+00,0%39"7 8", — 6°,0%59" 7 6%, — 6°56%,9"7 8", + 6750%,9" 5",

5 6 7 8
= —(65",0%597°0% — 050°0g" 6" )" + (8%,8"59708", — 0,8%9" 0" )"
1&8 2&6
+ (5%529/)6507 _ 5%529”55”7)9“/) _ ((wﬁyagoﬁ(;pv — 0P, (5‘7[39“55””9”0,

3&7 4&5
[T, T =i T = g =g T + 4" T) ] (2.1)

¢ % —~
omep €eL der€au

b) Like part (a) above, we are to show that the matrices

v i L v
St :Z[’ylafy ]7

generate the Lorentz algebra,
(1Y, §P7] = i (g"P ST — ghPSVT — gYT GHP 4 gho GVPY

As Pascal wrote, ‘T apologize for the length of this [proof], for I did not have time to make it
short.” Before we proceed directly, let’s outline the derivation so that the algebra is clear. First,
we will fully expand the commutator of S* with S??. We will have 8 terms. For each of those
terms, we will use the anticommutation identity y#~4* = 2g** — v¥~4* to rewrite the middle of
each term. By repeated use of the anticommutation relations, it can be shown that

VAPA T = AT+ 2(g7 AN = gAY A gAY = g T+ g = YY), (2.2)
This will be used to cancel many terms and multiply the whole expression by 2 before we contract

back to terms involving S#’s. Let us begin.

1
(57,877 = =16 (¥ =7"7",7"77 =7777)),

1 v (o v (on 12 (o v (o
= —E([W”w ] = Y YT = YA P + YA AR

1 v 124 v 124
16 (YA APAT = APATAHNY — AN AP TPty

=V AHAPNT +APYTAA A AENTAE = TP

1 (o8 (on o g
16 (29”’)7“7 = HAPNAT = 27PN T A 4 T AP
— 297K+ APPNTNT A+ 297HY P — A TP
— 2677V + AT AP+ 267 TP A — APy A

+ 2gHPy 7YY — ATyl — 2gHP Y7 + v”va’“r”).
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Now, the rest of the derivation is a consequence of (2.2). Because each y*v”~yPy7 term is
equal to its complete antisymmetrization y7~yP~”~vy* together with six ¢g”?-like terms, all terms
not involving the metric tensor will cancel each other. When we add all of the contributions
from all of the cancellings, sixteen of the added twenty-four terms will cancel each other and
the eight remaining will have the effect of multiplying each of the g”?-like terms by two. So
after this is done in a couple of pages of algebra that I am not courageous enough to type, the

commutator is reduced to

Ao

1
(VP
4(9 (Y

—77")

[ [5", 877 = i (g7 8" — g"P 5”7 — g"7 S + g7 87) ]

=" (VA = APY) + g7 (AP = APM) + g (VT =)

(2.3)

omep €deL Setfou

c) We are to show the explicit formulations of the Lorentz boost matrices A(n) along the 3 direction

in both vector and spinor representations. These are generically given by

Aw) = e B

JHY

)

where J"¥ are the representation matrices of the algebra and w,, parameterize the transforma-

tion group element.

In the vector representation, this matrix is,

cosh(n) 0 0 sinh(n)
0 1 0 0
Aln) = 0O 01 0
sinh(n) 0 0 cosh(n)
In the spinor representation, this matrix is
cosh(n/2) — sinh(n/2) 0 0
_ 0 cosh(n/2) + sinh(n/2) 0
N 0 0 cosh(n/2) + sinh(n/2)
0 0 0
So,
e 00 0
0 e 0 0
A =
(n) 0 0 677/2 0
0 0 0 2

d) No components of the Dirac spinor are invariant under a nontrivial boost.

0
0

cosh(n/2) — sinh(n/2)

(2.5)

e) Like part (c) above, we are to explicitly write out the rotation matrices A(f) corresponding to a

rotation about the z2 axis.

In the vector representation, this matrix is given by

1 0 0 0

0 cosf —sinf O

A(0) = 0 sinf cosf O

0 0 0 1

In the spinor representation, this matrix is given by
e0/2 0 0 0
0 €92 0 0
A(9) = :
( ) 0 O 6—19/2 O
0 0 0 €02

(2.7)

f) The vectors are symmetric under 27 rotations and so are unchanged under a ‘complete’ rotation.
Spinors, however, are symmetric under 47 rotations are therefore only ‘half-way back’ under a

27 rotation.
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Let us define the chiral transformation to be given by ¢ — ei‘x“fsw. How does the conjugate
spinor v transform?
We may begin to compute this transformation directly.
b — P =10
.5
= (7)1,
= wTe*iavs,YO_
When we expand e~ in its Taylor series, we see that because 4° anticommutes with each of

the 7° terms, we may bring the ~° to the left of the exponential with the cost of a change in the
sign of the exponent. Therefore

D — Pt (3.1)
We are to show the transformation properties of the vector V# = ¢y1p.
We can compute this transformation directly. Note that v anticommutes with all .

VI = Gy — el ey,
— . 5 . 5
— gytemien ey,

=yt =V

52

We must show that the Dirac Lagrangian £ = @(i’y“@u — m)% is invariant under chiral trans-
formations in the the massless case but is not so when m # 0.

Note that because the vectors are invariant, d, — 0,. Therefore, we may directly compute
the transformation in each case. Let us say that m = 0.

£ = Gl — £ e e,
= iyt 0T 9,
= i = L.
Therefore the Lagrangian is invariant if m = 0. On the other hand, if m # 0,
L= Gin O — bmap — £ = hin" O — e’ me' "y,
= Gin" 0 — dme* 7§ # L.

It is clear that the Lagrangian is not invariant under the chiral transformation generally.

Therefore,

The most general Noether current is

oL oL
gt = ———d0¢(x) — (5‘V¢ x) — Eé“y) ox”,
50,6 90,07
where d¢ is the total variation of the field and dz” is the coordinate variation. In the chiral
transformation, dx¥ = 0 and ¢ is the Dirac spinor field. So the Noether current in our case is

given by,
oL oL

iF= = 5+ —— 5.
5= 50,0 8@
Now, first we note that
oL . oL
= ¢Yiy" and — =
o0, " 9(0.7)

To compute the conserved current, we must find 6. We know ¢ — 1/ = ei®?" ~ (1 +iay®),
so 09 ~ iy, Therefore, our conserved current is

it = ="y (3.3)

Note that Peskin and Schroeder write the conserved current as j&' = ¢y#41). This is essen-
tially equivalent to the current above and is likewise conserved.
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We are to compute the divergence of the Noether current generally (i.e. when there is a possibly
non-zero mass). We note that the Dirac equation implies that 70,1y = —imi) and 9,9y =
imap. Therefore, we may compute the divergence directly.

Oujt = — (8, 0)V v b — Py ¥ 0,0,
= —(8, )Y + Py YO,
= —imapy° — impy°ep,
5 0ugl = —i2mypyP. (3.4)

Again, this is consistent with the sign convention we derived for j£ but differs from Peskin and
Schroeder.

We are to find unitary operators C and P and an anti-unitary operator 7 that give the standard
transformations of the complex Klein-Gordon field.
Recall that the complex Klein-Gordon field may be written

d3p 1 . _
z) = | —— ——— (ape "P* + bl ¢PX);
¢(@) / (2m)3 2B, (ap p")
d’ 1 , ,
* T ipx —ipxX
) — ale* + bye .
(b ( ) / (27.(.)3 /2Ep ( P p )
We will proceed by ansatz and propose each operator’s transformation on the ladder operators
and then verify the transformation properties of the field itself.

Parity
We must to define an operator P such that P¢(t,x)PT = ¢(t, —x). Let the parity transfor-
mations of the ladder operators to be given by

PapPt =nea_p  and  PbyPT = npb_p.
We claim that the desired transformation will occur (with a condition on 7). Clearly, these
transformations imply that

d 1 , )
Pott. P = [ 0 L (uacpe bt ) ~ oft, —x),

(2m)3 | /2E,
If we want Po(t,x)PT = ¢(t,—x) up to a phase 74, then it is clear that 7, must equal Ny in
general. More so, however, if we want true equality we demand that n, = n; = 1.

Charge Conjugation
We must to define an operator C such that Ceé(t,x)CT = ¢*(¢,x). Let the charge conjugation
transformations of the ladder operators be given by

CapCl = by and ChpCl = ap.
These transformations clearly show that

d 1 , )
Co(t,x)CT = / (23;3 NN (bpe™™* + ale'™) = ¢*(t, x).

Time Reversal
We must to define an operator 7 such that 7¢(t, x)71 = ¢(—t,x). Let the anti-unitary time
reversal transformations of the ladder operators be given by
TapT =a_y and ThpT  =b_p.

Note that when we act with 7 on the field ¢, because it is anti-unitary, we must take the complex
conjugate of each of the exponential terms as we ‘bring 7 in.” This yields the transformation,

d 1
To(t,x)TH = / (23;3 oo

(a_peipx + bT_pefipx) = ¢(—t,x).
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b) We are to check the transformation properties of the current
JH =ilg" (0" ¢) — (0"¢")¢),
under C, P, and 7. Let us do each in turn.
Parity
Note that under parity, 0" — 0,,.
PJHPl = Pil™(9"¢) — (0"6")¢]P",
= i[Po*PIPI¢PT — POr¢*PTPHPT],
= i@ (t, =x)(9uo(t, =x)) = (09" (1, =%)) (L, —x)],
SPIRPT =, (4.1)

Charge Conjugation
cJrct = cilg*(9%9) — (9"¢™)¢lCt,
— i[cg ctcorect —corgrcicect,
= i[p(9"¢") — (9"¢)9"],
’ cjret = — gn. ‘ (4.2)

Time Reversal
Note that under time reversal, 0" — —0,, and that 7 is anti-unitary.

TIMTT = Tilp*(9") — (9" )| T,
= —i[TQ*TTTO'¢TT — TO'p*T T T,
= —i[-T¢* TN O THT") + (0, To*THT ¢TT],
= i[¢" (=1, %) (Oud(—t, %)) = (0™ (1, x))P(—1,x)],
STIRT =, (4.3)
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1. The Decay of a Scalar Particle
From the Lagrangian given by,

1 1 1 1
H= 5(8;@)2 - §M2‘I’2 + 5(3;@)2 - §m2¢2 — u®g?,

we are to determine the lifetime of a ® particle to decay into two ¢’s to the lowest order in p assuming
that M > 2m.
We first notice that the interaction Hamiltonian is f d>zp®¢p¢. From this, we can directly calculate

the amplitude associated with our desired diagram: 10}
kl //
p /
IM=P ———-m—— = —2iu,
\

B\

\

¢

The factor of 2 comes from Bose statistics associated with the two identical final ¢ particles. So,
IM|? = 4p®.

We have shown before that we can directly compute the decay width of a particle from the amplitude
by using the relation,

K] 2
2M/167r2 EcmM/” '

In the center of mass frame, the rest frame of the ®, E., = M, p = ( 0),k = (M/2 k) and
ky = (M/2,—Fk). From simple kinematics it is clear that |k| = (MTz —m ) =M (1-4m; ) . This

leads to
A2 M2 2\ 1/2
. e R Q.
6472 M2 M?2

When we integrate over the solid angle €2, we should only cover 2w because the ¢’s are identical. After
integrating and simplifying terms we find that

p_ 2 <1—42>1/Q. (1.1)

8t M M?
M 2 —-1/2
=T (14;;2) | (12)

‘. % —~
omep €del der€an

2. Massless Fermion Scattering in Yukawa Theory

a) We are to write the complete amplitude for scattering two massless fermions in Yukawa theory.
From previous homework and class notes this is,
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b) We are to compute the spin-averaged square of this amplitude explicitly. We will make explicit

use of our trace identities and will simplify in terms of the standard Mandelstam variables s, ¢
and u.

Let us begin our derivation by noting that the Mandelstam variables (in the massless limit)
are given by

s=p+p)=(k+k)?=2p p =2k-k,
t=((k-p2=Fk —p)=-2p-k=-2k;
u= (K —p?=(k-p)=-2pk=-2"k

We can now directly compute the spin averaged squared amplitude. When using the standard
trace technology, we will simplify our terms by noticing that m; = 0.

MP =T {<t—1ni>2u<k>u<p>u<p>u<k>u<k’>u<p’>u<p’>u(k’>

spin
1

B mﬂ(k)u(p/)ﬂ(p/)u(k)ﬂ(kl)u(p)ﬂ(p)u(k’)

- — a<k>u<p'>a(k’>u<p>a<p’>u(k')ﬂ(zo)u(k)}7

(t— mi)(u —m3)

N

{1Tr R T (B ) + —— o T () T [ )

(t—mfb)2 (u—mi)2

* ] 16(p-k)(p- k) L 16K - )
(t — mi,)2 (u— mi)2

Tr [W%'rf]} ;

(t —m3)(u—m3)

S

- ° 7 ((k-p)(k’-p')+(p’-/€)(p-k’) —(p-p’)(k-k’)>},

(t —m3)(u—m3

I AR ()
41 (t-m3)?  (u-m3)? (t-—mi)(u—m3)\4 4 4 ’

g 2 . u? T
(t—=m2)?  (u—m3)? 2(t—mi)(u—m3) [’

d)

We can simplify this equation by recalling that, in general, >, m; = s + ¢ 4+ u. In the massless

case this reduces to s+t +u = 0 and so s* = —(t + u)?. We may therefore conclude that
12 u? tu
M2 = g + + ) (2.2)
E—m2)? " (u—m2? " (t—m2)u—m?)

omep €deL Setfou

Let us reduce equation (2.2) to the case where mg = 0. By sight, this becomes

M2 =g*(1 +1+1) =3g¢" (2.3)

It is worth noting that this agrees with our homework result.

Let us now compute the total cross section for this event. We have previously demonstrated
that in the center of mass frame the differential cross section is given by

do|  TMP
dQ cm B 647T2E(?77L
To determine the total cross section, we must integrate over half the solid angle giving us a
factor of 2.

3g*
S 2.4
77 3nE2, (24)
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3. The Ward Identity for Compton Scattering
We are to explicitly verify the Ward identity, k, M" = 0, for the case of Compton scattering. This is
equivalent to a demonstration that when €, (k) = k,,

: VY A+ 2 2yt — A
M= - ke, (k =0.
M = it (e, (e | THES B
This demonstration will be much clearer if we rewrite the second term in the amplitude in terms
of (p'— k) instead of (p— k). This is reasonable because by momentum conservation p — k' = p’ — k.
To rewrite the amplitude, however, it is important to notice that the contraction that was used for

simplification, ( + m)y*u(p) = 2p*u(p) cannot be used when we use ('— k + m). We can, however,
contract to the left using u(p’). Doing so will yield

_ / Con [ A 29T 2p Ayt —
M = —ie e#(k e (K)a(p’) [ 5k ok u(p).

Let us derive this amplitude for the case of €,(k) = k, by brute force.

1 v HpV Vb v "
iM = —ic’e, (K )e, (k)a(p') [7 ey wh ok } uw)

-k 2 - k

_ YHEY” + 29 p” 2p A — Ayt

= —ie%e n(EDu(p’) _k 5k —ky %k u(p),
. o [t B+ 2p Ryt 2p Ryt = Ryt

i 2 k1t / _
= —te eu(k )U(p) I 2p -k 2p/ -k U’(p)a

oo [ kpyPy” 4 2p - ket 2p” Ryt — KRy
i 2 okt / 4 _
= —ie’ey (K )u(p') _ ok ok u(p),
et (k)a() [2kH — 2KH 4 2P 4H — Py 4 2p - kot 2p' - Ryt M w(p)
N " P 2p -k 20 -k ),

:2p . k:'y“ B 2p/ . k'y“} u(p)

| 2p-k 2" - k ’

—ie”e;, (K )u(p') [v* — v*] u(p) = 0.

[ kM (k) = 0. (3.1)

4. Compton Scattering in Scalar Quantum Electrodynamics
We are to consider the physics governed by the Lagrangian

Il
|
S
Q
()
[n)
*
—~
W
\_/
S
—
)B\
—

L= *%F/WFMV + DquTDMQZ) - m2¢T¢ - 2(¢T¢)2

As usual, F),, = 0,4, —0,A, and D,¢ = 0,¢ + icA,¢.

a) The Lagrangian is clearly invariant under the transformation ¢ — e~%“¢ because it contains
only squared terms and we can assume for now that « is a constant. So £ — £’ = £. Let us
compute the conserved Noether current.

First, let us rewrite the global phase transition to the first order to determine the variation
on each of the complex fields.

¢ — ¢ =e (1 —iea)p = Ap = —ieg;
¢T N ¢/T — eiea¢T ~ (1+ ieoz)qi)T = Ang - ieng.

We can use this to calculate the conserved Noether current associated with this symmetry.
From our earlier work in class and homework, we know that,

oL oL
A
90,0~ T 80,07
= (0" — icA"d)(—icd) + (8" + icAFd)(icd))
= ((—ie¢)D"¢" + (ie¢') D" ),

ot =ie (¢'D"p — pDMoT) . (4.1)

omep €deL Setfou

gt = Agl,
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b) Even more interesting than global phase invariance, however, is that the Lagrangian is in fact
locally gauge invariant. A transformation of the form ¢ — e~ ()¢ will leave the Lagrangian
unchanged. The field strength tensor is invariant to this gauge as we know from electrodynamics.
Let us consider how the covariant derivative and the vector potential must transform to preserve
invariance with respect to this gauge.

By direct calculation, we see that

Du¢ — Dy = e‘im(m)Dufb — ie@ua(x)e_im(z)qb.
We can transform the vector potential by 4, — A}, = A4, + Oua(zx), and leave F),,, invariant
because we only add a total derivative. By adding this term, however, D,, will become invariant

under the local phase transformation. For precisely this utility, A, is defined to transform in
just the right way to maintain D,’s covariance. So,

Ay — Ay = A+ 0ua().
c) We are to draw the Feynman diagrams for v¢~ — ¢~ in scalar quantum electrodynamics to

the order e2. Using our given vertex terms and propagator terms derived earlier, we may directly
write the diagram. They are all additive by Bose statistics.

d) The amplitude for this interaction is,

iM= {eg(k')2i62g“”ey(k;) + € (k) (—ie(p +p' + k)“)m(_ie(p +p' +K)" e (k)
LK) (ielp 1 = K)o (i - k’)“>ey(k>} ,

o o, o+ +E)(p+p + R (p+p —K)(p+p —k)*

= e E,/“ (k/)el/(k) {_QQM + 2p -k - 2p/ -k ;
9 L Cp+ k)2 + K" (29 —K)V(2p - K)

= —ie“e,; (K )e, (k) {Zg“ + ok - ok .

omep €deL Setfou

e) As in question (3) above, we must explicitly demonstrate the result of the Ward identity. This
can be accomplished by setting €,(k) = k, in the equation for the amplitude and see that
M — 0.

To demonstrate this case, it will be helpful to recall that a photon is represented by a null
vector, k,k” = 0, and that momentum is conserved, p+k —p’ —k’ = 0. Let us derive the result.

v / I\ /o v N\
iM= —ie2el*(k/)ky{—2gw+ (2p + k)" (2p" + k)" (20"~ k)" (2p — ) }

g %k 2% -k
. ko (2p + k)Y (2p" + K k(20" — )" (2p — K"
P 2 Ik (1.0 . o .
zee“(k){ 2kH + 5k ok ,
, 2p-k)(2p' + K" (2p"-k)(2p — k)"
— 2 (1 — QLM ( _
zeeu(k){ EF 4 ok ok ,

= i (k) {—2k" + (2 + K'Y — (2p — K)}
= —2i€26;f(kl) {—p" — k" +p* + K"},
:(

= 722'626; k") {0},=0.

[ kMY (k) = 0.] (4.2)
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